Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 31 - 31
1 Dec 2013
Clary C Deffenbaugh D Leszko F Courtis P
Full Access

Introduction:

Adequate coverage of the resected tibial plateau with the tibial tray is necessary to reduce the theoretical risk of tibial subsidence after primary total knee arthroplasty (TKA). Maximizing tibial coverage is balanced against avoiding excessive overhang of the tray causing soft tissue irritation, and establishing proper tray alignment improving implant longevity and patella function1. Implant design factors, including the number of tray sizes, tray shape, and tray asymmetry influence the ability to cover the tibial plateau2. Furthermore, rotating platform (RP) tray designs decouple restoring proper tibial rotation from maximizing tibial coverage, which may enhance the ability to maximize coverage. The purpose of the current study was to assess the ability of five modern tray designs (Fig. 1), including symmetric, asymmetric, fixed-bearing, and RP designs, to maximize coverage of the tibial plateau across a large patient population.

Methods:

Lower limb computed-tomography scans were collected from 14,791 TKA patients and the tibia was segmented. Virtual surgery was performed with an 8-mm tibial resection (referencing the high side) made perpendicular to the tibial mechanical axis in the frontal plane, with 3° posterior slope, and aligned transversely to the medial third of the tibial tubercle. An automated algorithm placed the largest possible tray on the plateau, optimizing the ML and AP placement (and I-E rotation for the RP tray), to minimize overhang. The largest sized tray that fit the plateau with less than 2-mm of tray overhang was identified for each of the five implant systems. The surface area of the tibial tray was divided by the area of the resected plateau and the percentage of patients with greater than 85% plateau coverage was calculated.