Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 143 - 143
1 Sep 2012
Korduba L Loving L Klein R De Luise M Patel A Kester M
Full Access

INTRODUCTION

Many studies have looked at the effects of titanium tibial baseplates compared to cobalt chrome baseplates on backside wear. However, the surface finish of the materials is usually different (polished/unpolished) [1,2]. Backside wear may be a function not only of tray material but also of the locking mechanism. The purpose of this study was to evaluate the wear performance of conventional polyethylene inserts when mated with titanium tibial trays or cobalt chrome tibial trays that both have non-polished topside surfaces.

MATERIALS AND METHODS

Three titanium (Ti) trays were used along with three cobalt chrome (CoCr) trays. The Ti trays underwent Type II anodization prior to testing. All trays were Triathlon® design (Stryker Orthopaedics, Mahwah, NJ). Tibial inserts were manufactured from GUR 1020 conventional polyethylene then vacuum/flush packaged and sterilized in nitrogen (30 kGy). Appropriate sized CoCr femoral components articulated against the tibial inserts (Triathlon®, Stryker Orthopaedics, Mahwah, NJ).

Surface roughness of the tibial trays was taken prior to testing using white light interferometry (Zygo Corp, Middlefield, CT). A 6-station knee simulator (MTS, Eden Prairie, MN) was used for testing. Two phases were conducted. The first phase used a normal walking profile, as dictated by ISO 14243-3 [3]. The second phase used waveforms created specifically for stair climbing kinematics. Testing was conducted at a frequency of 1 Hz for 2 million cycles for each test with a lubricant of Alpha Calf Fraction serum (Hyclone Labs, Logan, UT) diluted to 50% with a pH-balanced 20-mMole solution of deionized water and EDTA (protein level = 20 g/l) [4]. The serum solution was replaced and inserts were weighed for gravimetric wear at least every 0.5 million cycles. Standard test protocols were used for cleaning, weighing and assessing the wear loss of the tibial inserts [5]. Soak control specimens were used to correct for fluid absorption with weight loss data converted to volumetric data (by material density). Statistical analysis was performed using the Student's t-test (p<0.05).