Processing of allografts, which are used to fill bone defects in orthopaedic surgery, includes chemical cleaning as well as gamma irradiation to reduce the risk of infection. Viable bone cells are destroyed and denaturing proteins present in the graft the osteoconductive and osteoinductive characteristics of allografts are altered. The aim of the study was to investigate the mechanical differences of chemical cleaned allografts by adding blood, clotted blood, platelet concentrate and platelet gel using a uniaxial compression test. The allografts were chemically cleaned, dried and standardized according to their grain size distribution. In group BL 4 ml blood, in CB 4 ml blood and 480 μl of 1 mol calcium chloride to achieve clotting, in PC 4 ml of concentrated platelet gel, in PG 4 ml of concentrated platelets and 666 μl of 1 mol calcium chloride were added. Uniaxial compression test was carried out for the four groups before and after compating the allografts.Background
Methods
BAG-S53P4 has similar mechanical properties as cortical bone tissue and can be used as an additive to bone allografts. The aim of this study was to evaluate the effect of adding BAG-S53P4 to chemically treated allografts with controlled grain size distribution. Allografts were prepared and chemically cleaned under sterile conditions. 30 samples were mixed with BAG-S53P4 additive (BG) and compared to a control group (CG) with similar grain size distribution and composition in weight. All samples underwent a uniaxial compression test after compaction with a dropped weight apparatus. The yield limit was determined by a uniaxial compression test and density was recorded. The two groups were tested for statistical differences with the student's t-Test.Introduction
Methods
A cleaning process reduces the contamination risk in bone impaction grafting but also modifies the grain size distribution. The cleaned allograft shows a higher mechanical stability than the untreated group. In revision total hip replacement, bone loss can be managed by impacting porous bone chips. The bone chips have to be compacted to guarantee sufficient mechanical strength. To improve the safety of bone grafts and to reduce the risk of bacterial and viral contamination, cleaning processes are used to remove the organic portion of the tissue while maintaining its mechanical characteristics. A cleaning procedure described by Coraca-Huber et al. was compared to untreated allografts by performing a sieve analysis, followed by an uniaxial compression test. Differences in grain size distribution and weight loss during the cleaning procedure were compared to data from literature. Yield stress limits, flowability coefficients as well as initial density and density at the yield limit of the two groups were determined for each group over 30 measurements. The measurements were taken before and after compression with an impaction apparatus (dropped weight). The cleaning process reduced the initial weight by 56%, which is comparable to the results of McKenna et. al. Cleaned allograft showed a 25% lower weight of bone chips sized > 4 mm compared to data from a previous study. The cleaned bone chips showed a statistically significant (p > 0.01) higher yield limit to a compression force (0.165 ± 0.069 MPa) compared to untreated allograft after compaction (0.117 ± 0.062 MPa). The flowability coefficient was 0.024 for the cleaned allograft and 0.034 for the untreated allograft. Initial density as well as the density at the yield limit was higher for the untreated allografts, as the sample weight was twice as high as in the cleaned group, to compensate for the washout of the organic portion. The cleaned bone grafts showed a higher compaction rate, which was 31%, compared the the untreated group with a compaction rate of 22%. The cleaned allograft showed a higher compaction rate, which means that the gaps between the single grains are filled out with smaller particles, resulting in better interlocking. In the untreated allograft the interlocking mechanism is hindered by the organic elements. This observation is confirmed by a reduced flowabillity and a higher yield stress limit. The loss of weight as well as a higher compaction rate implies that more cleaned graft material is needed to fill bone defects in hip surgery. Sonication may damage the bone structure of the allograft and reduce the size of the particles.