Dupuytren's disease (DD) is a fibroproliferative soft tissue disease affecting the palmar fascia of the hand causing permanent and irreversible flexion contracture. Aberrant fibrosis is likely to manifest through a combination of extrinsic, intrinsic, and environmental factors, including genetics and epigenetics. However, the role of epigenetics in soft tissue fibrosis in diseases such as DD is not well established. Therefore, we conducted a comprehensive multi-omic study investigating the epigenetic profiles that influence gene expression in DD pathology. Using control (patients undergoing carpal tunnel release) and diseased fibroblasts (patients undergoing Dupuytren's fasciectomy), we conducted ATAC-seq to assess differential chromatin accessibility between control and diseased fibroblasts. Additionally, ChIP-seq mapped common histone modifications (histone H4; H3K4me3, H3K9me3, H3K27me3, H4K16Ac, H4K20Me3) associated with fibrosis. Furthermore, we extracted RNA from control and DD tissue and performed bulk RNA-seq. ATAC-seq analysis identified 2470 accessible genomic loci significantly more accessible in diseased fibroblasts compared to control. Comparison between diseased and control cells identified numerous significantly different peaks in histone modifications (H4K20me3, H3K27me3, H3K9me3) associated with gene repression in control cells but not in diseased cells. Pathway analysis demonstrated a substantial overlap in genes being de-repressed across these histone modifications (Figure 1). Both, ATAC-seq and ChIP-seq analysis indicated pathways such as cell adhesion, differentiation, and extracellular matrix organisation were dysregulated as a result of epigenetic changes. Moreover, The current epigenetic study provides insights into the aberrant fibrotic processes associated with soft tissue diseases such as DD and indicates that epigenetic-targeted therapies may be an interesting viable treatment option in future. For any figures or tables, please contact the authors directly.