Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 31 - 31
10 May 2024
Clatworthy M Rahardja R Young S Love H
Full Access

Background

Anterior cruciate ligament (ACL) reconstruction with concomitant meniscal injury occurs frequently. Meniscal repair is associated with improved long-term outcomes compared to resection but is also associated with a higher reoperation rate. Knowledge of the risk factors for repair failure may be important in optimizing patient outcomes.

Purpose

This study aimed to identify the patient and surgical risk factors for meniscal repair failure, defined as a subsequent meniscectomy, following concurrent primary ACL reconstruction.


Introduction

The first VRAS TKA was performed in New Zealand in November 2020 using a Patient Specific Balanced Technique whereby VRAS enables very accurate collection of the bony anatomy and soft tissue envelope of the knee to plan and execute the optimal positioning for a balanced TKA

Method

The first 45 VRAS patients with idiopathic osteoarthritis of the knee was compared with 45 sequential patients who underwent the same TKA surgical technique using Brainlab 3 which the author has used exclusively in over 1500 patients. One and two year outcome data will be presented


The bone-patellar tendon-bone (BTB) autograft is associated with difficulty kneeling following anterior cruciate ligament (ACL) reconstruction, however it is unclear whether it results in a more painful or symptomatic knee when compared to the hamstring tendon autograft. This study aimed to identify the rate of significant knee pain and difficulty kneeling following primary ACL reconstruction and clarify whether graft type influences the risk of these complications.

Primary ACL reconstructions prospectively recorded in the New Zealand ACL Registry between April 2014 and November 2019 were analyzed. The Knee Injury and Osteoarthritis Outcome Score (KOOS) was analyzed to identify patients who reported significant knee pain, defined as a KOOS Pain subscale score of ≤72 points, and kneeling difficulty, defined as a patient who reported “severe” or “extreme” difficulty when they kneel. The rate of knee pain and kneeling difficulty was compared between graft types via univariate Chi-square test and multivariate binary logistic regression with adjustment for patient demographics.

4492 primary ACL reconstructions were analyzed. At 2-year follow-up, 9.3% of patients reported significant knee pain (420/4492) and 12.0% reported difficulty with kneeling (537/4492). Patients with a BTB autograft reported a higher rate of kneeling difficulty compared to patients with a hamstring tendon autograft (21.3% versus 9.4%, adjusted odds ratio = 3.12, p<0.001). There was no difference between graft types in the rate of significant knee pain (9.9% versus 9.2%, p = 0.49) or when comparing absolute values of the KOOS Pain (mean score for BTB = 88.7 versus 89.0, p = 0.37) and KOOS Symptoms subscales (mean score for BTB = 82.5 versus 82.1, p = 0.49).

The BTB autograft is a risk factor for post-operative kneeling difficulty, but it does not result in a more painful or symptomatic knee when compared to the hamstring tendon autograft.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 62 - 62
23 Feb 2023
Rahardja R Love H Clatworthy M Young S
Full Access

The bone-patellar tendon-bone (BTB) autograft has a lower rate of graft failure but a higher rate of contralateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction. Subsequent contralateral injury may be a marker of success of the BTB graft, but it is unclear whether the type of graft influences the rate of return to sport. This study aimed to compare the rates of return to weekly sport and return to preinjury activity levels between the BTB and hamstring tendon autografts following primary ACL reconstruction.

Prospective data on primary ACL reconstructions recorded in the New Zealand ACL Registry between April 2014-November 2019 were analyzed. The primary outcome was return to weekly sport, defined as a Marx activity score of 8, at 2-year follow-up. The secondary outcome was return to preinjury activity level, defined as a post-operative Marx activity score that was equal or greater to the patient's preinjury Marx score. Return to sport was compared between the BTB and hamstring tendon autografts via multivariate binary logistic regression with adjustment for patient demographics.

4259 patients were analyzed, of which 50.3% were playing weekly sport (n = 2144) and 28.4% had returned to their preinjury activity level (n = 1211) at 2-year follow-up. A higher rate of return to weekly sport was observed with the BTB autograft compared to the hamstring tendon autograft (58.7% versus 47.9%, adjusted odds ratio = 1.23, p = 0.009). Furthermore, the BTB autograft had a higher rate of return to preinjury activity levels (31.5% versus 27.5%, adjusted odds ratio = 1.21, p = 0.025).

The BTB autograft is associated with a higher return to sport and may explain the higher rate of contralateral ACL injury following primary ACL reconstruction.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 56 - 56
23 Feb 2023
Rahardja R Love H Clatworthy M Young S
Full Access

Arthrofibrosis is a less common complication following anterior cruciate ligament (ACL) reconstruction and there are concerns that undergoing early surgery may be associated with arthrofibrosis. The aim of this study was to identify the patient and surgical risk factors for arthrofibrosis following primary ACL reconstruction.

Primary ACL reconstructions prospectively recorded in the New Zealand ACL Registry between April 2014 and December 2019 were analyzed. The Accident Compensation Corporation (ACC) database was used to identify patients who underwent a subsequent reoperation with review of operation notes to identify those who had a reoperation for “arthrofibrosis” or “stiffness”. Univariate Chi-Square test and multivariate Cox regression analysis was performed. Hazard ratios (HR) with 95% confidence intervals (CI) were computed to identify the risk factors for arthrofibrosis.

9617 primary ACL reconstructions were analyzed, of which 215 patients underwent a subsequent reoperation for arthrofibrosis (2.2%). A higher risk of arthrofibrosis was observed in female patients (adjusted HR = 1.67, 95% CI 1.22 – 2.27, p = 0.001), patients with a history of previous knee surgery (adjusted HR = 1.97, 95% CI 1.11 – 3.50, p = 0.021) and when a transtibial femoral tunnel drilling technique was used (adjusted HR = 1.55, 95% CI 1.06 – 2.28, p = 0.024). Patients who underwent early ACL reconstruction within 6 weeks of their injury did not have a higher risk of arthrofibrosis when compared to patients who underwent surgery more than 6 weeks after their injury (3.5% versus 2.1%, adjusted HR = 1.56, 95% CI 0.97 – 2.50, p = 0.07). Age, graft type and concomitant meniscal injury did not influence the rate of arthrofibrosis.

Female sex, a history of previous knee surgery and a transtibial femoral tunnel drilling technique are risk factors for arthrofibrosis following primary ACL reconstruction.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 58 - 58
23 Feb 2023
Rahardja R Love H Clatworthy M Young S
Full Access

The optimal method of tibial fixation when using a hamstring tendon autograft in anterior cruciate ligament (ACL) reconstruction is unclear. This study aimed to compare the risk of revision ACL reconstruction between suspensory and interference devices on the tibial side.

Prospective data on primary ACL reconstructions recorded in the New Zealand ACL Registry between April 2014 and December 2019 were analyzed. Only patients with a hamstring tendon autograft fixed with a suspensory device on the femoral side were included. The rate of revision ACL reconstruction was compared between suspensory and interference devices on the tibial side. Univariate Chi-Square test and multivariate Cox regression was performed to compute hazard ratios (HR) and 95% confidence intervals (CI) with adjustment for age, gender, time-to-surgery, activity at the time of injury, number of graft strands and graft diameter.

6145 cases were analyzed, of which 59.6% were fixed with a suspensory device on the tibial side (n = 3662), 17.6% fixed with an interference screw with a sheath (n = 1079) and 22.8% fixed with an interference screw without a sheath (n = 1404). When compared to suspensory devices (revision rate = 3.4%), a higher risk of revision was observed when using an interference screw with a sheath (revision rate = 6.2%, adjusted HR = 2.05, 95% CI 1.20 – 3.52, p = 0.009) and without a sheath (revision rate = 4.6%, adjusted HR = 1.81, 95% CI 1.02 – 3.23, p = 0.044). The number of graft strands and a graft diameter of ≥8 mm did not influence the risk of revision.

When reconstructing the ACL with a hamstring tendon autograft, the use of an interference screw, with or without a sheath, on the tibial side has a higher risk of revision when compared to a suspensory device.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 60 - 60
23 Feb 2023
Rahardja R Love H Clatworthy M Young S
Full Access

Meniscal repairs are commonly performed during anterior cruciate ligament (ACL) reconstruction. This study aimed to identify the risk factors for meniscal repair failure following concurrent primary ACL reconstruction.

Primary ACL reconstructions with a concurrent repair of a meniscal tear recorded in the New Zealand ACL Registry between April 2014 and December 2018 were analyzed. Meniscal repair failure was defined as a patient who underwent subsequent meniscectomy, and was identified after cross-referencing data from the ACL Registry with the national database of the Accident Compensation Corporation (ACC). Multivariate Cox regression was performed to produce hazard ratios (HR) with 95% confidence intervals (CI) to identify the patient and surgical risk factors for meniscal repair failure.

2041 meniscal repairs were analyzed (medial = 1235 and lateral = 806). The overall failure rate was 9.4% (n = 192). Failure occurred in 11.1% of medial (137/1235) and 6.8% of lateral (55/806) meniscal repairs. The risk of medial failure was higher with hamstring tendon autografts (adjusted HR = 2.00, 95% CI 1.23 – 3.26, p = 0.006) and in patients with cartilage injury in the medial compartment (adjusted HR = 1.56, 95% CI 1.09 – 2.23, p = 0.015). The risk of lateral failure was higher when the procedure was performed by a surgeon with an annual case volume of less than 30 ACL reconstructions (adjusted HR = 1.92, 95% CI 1.10 – 3.33, p = 0.021). Age, gender, time from injury-to-surgery and femoral tunnel drilling technique did not influence the risk of meniscal repair failure.

When repairing a meniscal tear during ACL reconstruction, the use of a hamstring tendon autograft or the presence of cartilage injury in the medial compartment increases the risk of medial meniscal repair failure. Lower surgeon case volume increases the risk of lateral meniscal repair failure.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 49 - 49
1 Feb 2017
Huey V Brenkel I Chang C Clatworthy M Hamilton W Howard J Kantor S Lesko J Nunley R Whittaker J Verdonk P
Full Access

Introduction

With the introduction of new technology in orthopaedics, surgeons must balance anticipated benefits in patient outcomes with challenges or complications associated with surgical learning curve for the technology. The purpose of this study was to determine whether the surgeon learning curve with a new multi-radius primary TKA system (primary TKA implant and instruments) designed for surgical team ease would impact clinical outcomes, surgical time and complications.

Materials & Methods

From November 2012 to July 2015, 2369 primary TKAs were prospectively enrolled in two multicenter studies across 50 sites in 14 countries with a new knee system (ATTUNE®) evenly balanced across four configurations: cruciate retaining or posterior stabilised with either fixed bearing or rotating platform (CRFB, CRRP, PSFB, PSRP). 2261 knees had a <1 year visit and 1628 had a greater than 1 year visit. These knees were compared to a reference dataset of 845 primary TKAs from three manufacturers in the same four configurations with currently available products (CURRENT-TKA). Demographics for ATTUNE and CURRENT-TKA were similar and typical for primary TKA. Operative times, clinical outcomes and a series of five patient reported outcomes were compared for ATTUNE vs. CURRENT-TKA. The first 10 ATTUNE subjects for each surgeon were defined as learning curve cases (N=520) and were compared to all later subjects (N=1849) and also with the CURRENT-TKA cases (N=845). Patient reported outcome measures and clinical outcome analyses were adjusted for covariates including patient demographics, pre-op assessment and days post-op.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 88 - 88
1 Nov 2016
Howard J Brenkel I Chang C Clatworthy M Hamilton W Howard J Huey V Kantor S Lesko J Nunley R Verdonk P
Full Access

With the introduction of new technology in orthopaedics, surgeons must balance anticipated benefits in patient outcomes with challenges or complications associated with surgical learning curve for the technology. The purpose of this study was to determine whether surgeon learning curve with a new multi-radius primary TKA system and instruments designed to improve surgical team ease would impact clinical outcomes, surgical time, and complications.

From November 2012 to July 2015, 2369 primary TKAs were prospectively enrolled in two multicentre studies across 50 sites in 14 countries with a new knee system (NEW-TKA) evenly balanced across four configurations: cruciate retaining or posterior stabilised with either fixed bearing or rotating platform (CRFB, CRRP, PSFB, PSRP). 2128 knees had a<1 year visit and 1189 had a minimum 1 year visit. These knees were compared to a reference dataset of 843 primary TKAs from three manufacturers in the same four configurations with currently available products (CA-TKA). Demographics for NEW-TKA and CA-TKA were similar and typical for primary TKA. Operative times, clinical outcomes and a series of five patient reported outcomes were compared for NEW-TKA vs. CA-TKA. The first 10 New-TKA subjects for each surgeon were defined as learning curve cases (N=520) and were compared to all later subjects (N=1849). Patient reported outcome measure and clinical outcome analyses were covariate adjusted for patient demographics, pre-op assessment and days post-op.

Mean (SD) surgical time for NEW-TKA learning curve cases was 79.1 (24.3) minutes, which reduced thereafter to 73.6 (24.3) (p=0.002). Beyond 10 cases, there was a continued reduction in NEW-TKA surgical time (R-Squared = 0.031). After 10 cases, surgical time was on par with the mean (SD) 71.9 (21.6) for CA-TKA (p=0.078). PROM outcomes of the first 10 learning curve cases for NEW-TKA were not statistically different from later cases at less than 1 year or later when adjusted for relevant covariates including configuration, patient demographics, pre-op functional status, and time post-op (p-values > 0.01). PROM outcomes for NEW-TKA vs. CA-TKA under the same covariate adjustments showed a trend favoring KOOS ADL, Symptoms, and Sport and Recreation subscores at minimum 1 year (p-values < 0.01). The incidence of intraoperative operative site complications was 1.3% for the NEW-TKA learning curve cases which was similar to the 0.6% rate for historical CA-TKA (p=0.231) and the intraoperative complication rate for the NEW-TKA later cases was consistent with learning curve cases (p=0.158).

The introduction of new implants into the market place needs to have adequate data to support that they are safe and effective. Except for a minor increase in surgical time during the first 10 patients, this study found that surgeon learning curve with this new primary TKA system does not adversely affect patient short term outcomes and complication rates.