Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 89 - 89
1 Jul 2020
Chua K
Full Access

Osteosarcoma is the most common primary bone tumour worldwide. This disease presents a formidable challenge to the orthopaedic surgeon, with a mortality rate of 30 per cent, even after surgical clearance. Aberrant Wnt signalling has been implicated in the pathogenesis osteoblastic tumours. The objective of this study is 2 fold- to investigate if osteosarcoma does indeed demonstrate aberrant Wnt signaling, and if so, does osteosarcoma respond to a novel Wnt inhibitor(ETC159). This can potentially lead to the development of a new adjuvant treatment modality for osteosarcoma.

A novel Wnt signaling pathway protein antibody (YJ5) was used in immunihistochemistry staining of clinical osteosarcoma samples. A Wnt high osteosarcoma cell line(SJSA-1) was then implanted subcutaneously in a mouse model. These mice were treated with a novel PORCN inhibitor, ETC 159 for a period of 4 weeks in a two-arm randomised control study. The results of treatment were evaulated by clinical outcome parameters as well as immunohstochemistry.

100 per cent of clinical osteosarcoma samples demonstrated increased WLS expression and Wnt protein expression. SJSA-1 showed no significant decrease in tumour volume after 30 days of drug treatment (3070 SD 625 mm3 vs 3480 SD 433 mm3 p= 0.605 and 2060 SD 209 vs 1677 SD 213 mm3 p=0.219 respectively).

Significantly, SJSA-1 demonstrated increased tumour necrosis in the treatment arm(30–60 percent increase across all samples p < 0 .005) Treated tumours also demonstrated markedly less angiogenesis compared to the non treatment arm.

Osteosarcoma demonstrates aberrant Wnt signaling in a large percentage of cases. The use of a novel PORCN inhibitor ETC 159 for the treatment of Osteosarcoma has a marked effect on tumour necrosis. Our results suggest that ETC159 may cause tumour necrosis by inhibiting angiogenesis within the tumour. Further evaluation and understanding of the mechanism of Wnt singaling in regulating tumour pathogenesis may hold the potential for developing a curative therapeutic drug for this deadly disease.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 85 - 85
1 Jan 2016
Goh S Chua K Chong D Yew A Lo NN
Full Access

Introduction

Total hip replacement is an established surgical procedure done to alleviate hip pain due to joint diseases. However, this procedure is avoided in yonger patients with higher functional demands due to the potential for early failure. An ideal prosthesis will have have a high endurance against impact loading, with minimal micromotion at the bone cement interface, and a reduced risk of fatigue failure, with a favourable stress distribution pattern in the femur. We study the effect of varying the material properties and design element in a standard cemented total hip using Finite Element Analysis.

Methods

A patient-specific 3D model of femur will be constructed from CT scan data, while a Summit® Cemented Hip System (DePuy Orthopedic) will be used to as a control for comparative evaluation. We vary the material stiffness of different parts of the prosthesis(see Fig.1) to formulate a design concept for a new total hip prosthesis design; and use Finite Element Method to predict the micromotion of the hip prosthesis at the bone cement interface, as well as the stress distribution in the the femur.