Cell-based tendon engineering is an attractive alternative therapeutic approach to established treatments of tendon injuries. Numerous cell types are promising source of tendon engineering; however, there are certain disadvantages for each cell type. Interestingly, dermal fibroblasts (DFs) are able to transdifferentiate into other cell types, they are widely distributed in dermis and easy to harvest and isolate. Furthermore, pilot clinical studies suggested a promising therapeutic potential of autologous DFs for discorded tendons (Connell et al., 2009&2011), but the underlining repair mechanisms remain unclarified. To investigate tenogenic differentiation process in great detail, we have previously established a three-dimensional (3D) cell sheet model, comprising of three consecutive step (expansion, stimulation and maturation) leading to the formation of 3D tendon-like tube (Hsieh et al., 2018; Yan et al., 2020). Hence, the aim of this study was to carry out pilot examination of the tenogenic potential of human DFs (hDFs) by implementing the 3D cell sheet model. hDFs (company purchased, n=2), hBMSCs (human bone marrow mesenchymal stem cells, n=1) and hTSPCs (human tendon stem/progenitor cells, n=1) were used and subjected to the 3D model. In 2D culture, semi-qPCR was performed to validate the expression of DF markers in hDFs, namely NTN1, PDPN and CD26 for papillary dermis layer, and PPARG, ACTA2 and CD36 for reticular dermis layer). FACS analysis and immunofluorescence were employed to validate expression of CD73, CD90, CD105 and vimentin (mesenchyme marker), respectively. After harvesting the 3D cell sheets, wet weigh measurements, H&E and collagen type I stainings, and semi-qPCR for Scleraxis and tenomodulin were executed.Introduction
Methods