The purpose of this study is to determine the influence of knee flexion angle for drilling the posterolateral (PL) femoral tunnel during double-bundle anterior cruciate ligament (ACL) reconstruction via the anteromedial (AM) portal on resulting tunnel orientation and length. Methods: In nine fresh cadaveric knees, the ACL was excised and 2.4 mm guide wires were drilled through the PL bundle footprint via an AM portal. We compared knee flexion angles of 90, 110, 130 degrees. AP-, lateral- and tunnel view radiographs were measured to determine tunnel orientation, o’clock position, and direct measurement to determine intra-osseous tunnel length On AP view, increased flexion resulted in more horizontal tunnels. The angles were 31.9 ± 7.1°, 26.4 ± 8.9° and 23.0 ± 8.1° for 90°, 110° and 130°. The pin orientation was significantly different when comparing 90° and 130°. On lateral view, increased flexion resulted in more horizontal tunnels. The angles were 68.9 ± 19.9°, 50.4 ± 11.6°, 31.3 ± 12.3° for 90°, 110° and 130°. On tunnel view, pin orientation was 22 ± 8.2°, 28.3 ± 6.7° and 35.9 ± 6.2° for 90°, 110° and 130°. Mean o’clock position was 09:00 ± 0:12. Intra-osseous length of the pins did not significantly change with knee flexion. The exit of the pins on the lateral femur with regard to femoral attachment of the LCL was proximal. The distance was 0.1 ± 6.6 mm, 6.4 ± 6.4 mm and 9.2 ± 2.4 mm for 90°, 110° and 130°. This was significant when comparing 90° and 130°. The shortest distance between the exit and the posterior femoral cortex was 4.0 ± 1.8 mm, 9.7 ± 3.5 mm, and 13.2 ± 2.8 mm for 90°, 110° and 130°. All values were significant. Conclusion: At 110°, exit of the PL pin is close to the attachment of the LCL. 90° flexion risks damage to the LCL and posterior cortex blow-out. Thus we recommend drilling the PL tunnel at 130° of knee flexion
On the tibia, the centre of the AM attachment was located 18 mm anterior to the Retro-eminence ridge (RER). The centre of the PL bundle lay 8.4 mm posterior to the centre of the AM bundle. These positions were at 35% and 52% along Amis and Jacob’s line
Total hip replacement using an alumina head and socket and a titanium alloy stem is evaluated in a series of patients under 50 years of age. Between April 1977 and December 1986, 86 such replacements were performed in 75 patients, but mainly because patients had difficulty travelling from Africa, only 71 hips were followed up adequately; of these, 56 were primary procedures and 15 revisions. Survivorship analysis showed that 98% of the prostheses were retained for 10 years. On clinical and radiological examination 51 of the 71 hips were stable and acceptable, 15 had radiological changes on the acetabular side, and one on the femoral side; four other cases had clinical and radiological changes suggesting impending failure, possibly because fixation of the socket was inadequate. There were no differences between the results of the primary procedures and those of revisions. In these young patients, the results seem better with alumina-on-alumina hips than with other varieties, possibly because of their remarkably low wear.