To analyse bone stresses in humerus-megaprosthesis construct in response to axial loading under varying implant lengths in proximal humeral replacement following tumour excision. CT scans of 10 cadaveric humeri were processed in 3D Slicer to obtain three-dimensional (3D) models of the cortical and cancellous bone. Megaprostheses of varying body lengths (L) were modelled in FreeCAD to obtain the 3D geometry. Four FE models: group A consisting of intact bone; groups B (L=40mm), C (L=100mm) and D (L=120mm) comprising of humerus-megaprosthesis constructs were created. Isotropic linear elastic behaviour was assigned for all materials. A tensile load of 200N was applied to the elbow joint surface with the glenohumeral joint fixed with fully bonded contact interfaces. Static analysis was performed in Abaqus. The bone was divided at every 5% bone length beginning distally. Statistical analysis was performed on maximum von Mises stresses in cortical and cancellous bone across each slice using one-way ANOVA (0-45% bone length) and paired t-tests (45-70% bone length). To quantify extent of stress shielding, average percentage change in stress from intact bone was also computed. Maximum stress was seen to occur distally and anteriorly above the coronoid fossa. Results indicated statistically significant differences between intact state and shorter megaprostheses relative to longer megaprostheses and proximally between intact and implanted bones. Varying levels of stress shielding were recorded across multiple slices for all megaprosthesis lengths. The degree of stress shielding increased with implant lengthening being 2-4 times in C and D compared to B. Axial loading of the humerus can occur with direct loading on outstretched upper limbs or indirectly through the elbow. Resultant stress shielding effect predicted in longer megaprosthesis models may become clinically relevant in repetitive axial loading during activities of daily living. It is recommended to use shorter megaprosthesis to prevent failure.
This study aims to compare the biomechanical properties of the “Double Lasso-Loop” suture anchor (DLSA) technique with the commonly performed interference screw (IS) technique in an ex vivo ovine model. Fourteen fresh sheep shoulder specimens were used in this study. Dissection was performed leaving only the biceps muscle attached to the humerus and proximal radius before sharply incised to simulate long head of biceps tendon (LHBT) tear. Repair of the LHBT tear was performed on all specimens using either DSLA or IS technique. Cyclical loading of 500 cycles followed by load to failure was performed on all specimens. Tendon displacement due to the cyclical loading at every 100 cycles as well as the maximum load at failure were recorded and analysed. Stiffness was also calculated from the load displacement graph during load to failure testing. No statistically significant difference in tendon displacement was observed from 200 to 500 cycles. Statistically significant higher stiffness was observed in IS when compared with DSLA (P = .005). Similarly, IS demonstrated significantly higher ultimate failure load as compared with DSLA (P = .001). Modes of failure observed for DSLA was mostly due to suture failure (7/8) and anchor pull-out (1/8) while IS resulted in mostly LHBT (4/6) or biceps (2/6) tears. DSLA failure load were compared with previous studies and similar results were noted. After cyclical loading, tendon displacement in DLSA technique was not significantly different from IS technique. Despite the higher failure loads associated with IS techniques in the present study, absolute peak load characteristics of DLSA were similar to previous studies. Hence, DLSA technique can be considered as a suitable alternative to IS fixation for biceps tenodesis.
This study aims to investigate the mechanical properties of a rotator cuff tear repaired with a polypropylene interposition graft in an ovine infraspinatus ex-vivo model. Twenty fresh shoulders from skeletally mature sheep were used in this study. A tear size of 20 mm from the tendon joint was created in the infraspinatus tendon to simulate a large tear in fifteen specimens. This was repaired with a polypropylene mesh used as an interposition graft between the ends of the tendon. Eight specimens were secured with mattress stitches while seven were secured to the remnant tendon on the greater tuberosity side by continuous stitching. Remaining five specimens with an intact tendon served as a control group. All specimens underwent cyclic loading with a universal testing machine to determine the ultimate failure load and gap distance. Gap distance increased with progressive cyclic loading through 3000 cycles for all repaired specimens. Mean gap distance after 3000 cycles for both continuous and mattress groups are 1.7 mm and 4.2 mm respectively (P = .001). Significantly higher mean ultimate failure load was also observed with 549.2 N in the continuous group, 426.6 N in the mattress group and 370 N in the intact group. The use of a polypropylene mesh as an interposition graft for large irreparable rotator cuff tears is biomechanically suitable and results in a robust repair that is comparable to an intact rotator cuff tendon. When paired with a continuous suturing technique, it demonstrates significantly resultant superior biomechanical properties that may potentially reduce re-tear rates after repairing large or massive rotator cuff tears.