To analyse bone stresses in humerus-megaprosthesis construct in response to axial loading under varying implant lengths in proximal humeral replacement following tumour excision. CT scans of 10 cadaveric humeri were processed in 3D Slicer to obtain three-dimensional (3D) models of the cortical and cancellous bone. Megaprostheses of varying body lengths (L) were modelled in FreeCAD to obtain the 3D geometry. Four FE models: group A consisting of intact bone; groups B (L=40mm), C (L=100mm) and D (L=120mm) comprising of humerus-megaprosthesis constructs were created. Isotropic linear elastic behaviour was assigned for all materials. A tensile load of 200N was applied to the elbow joint surface with the glenohumeral joint fixed with fully bonded contact interfaces. Static analysis was performed in Abaqus. The bone was divided at every 5% bone length beginning distally. Statistical analysis was performed on maximum von Mises stresses in cortical and cancellous bone across each slice using one-way ANOVA (0-45% bone length) and paired t-tests (45-70% bone length). To quantify extent of stress shielding, average percentage change in stress from intact bone was also computed. Maximum stress was seen to occur distally and anteriorly above the coronoid fossa. Results indicated statistically significant differences between intact state and shorter megaprostheses relative to longer megaprostheses and proximally between intact and implanted bones. Varying levels of stress shielding were recorded across multiple slices for all megaprosthesis lengths. The degree of stress shielding increased with implant lengthening being 2-4 times in C and D compared to B. Axial loading of the humerus can occur with direct loading on outstretched upper limbs or indirectly through the elbow. Resultant stress shielding effect predicted in longer megaprosthesis models may become clinically relevant in repetitive axial loading during activities of daily living. It is recommended to use shorter megaprosthesis to prevent failure.
This study aims to compare the biomechanical properties of the “Double Lasso-Loop” suture anchor (DLSA) technique with the commonly performed interference screw (IS) technique in an ex vivo ovine model. Fourteen fresh sheep shoulder specimens were used in this study. Dissection was performed leaving only the biceps muscle attached to the humerus and proximal radius before sharply incised to simulate long head of biceps tendon (LHBT) tear. Repair of the LHBT tear was performed on all specimens using either DSLA or IS technique. Cyclical loading of 500 cycles followed by load to failure was performed on all specimens. Tendon displacement due to the cyclical loading at every 100 cycles as well as the maximum load at failure were recorded and analysed. Stiffness was also calculated from the load displacement graph during load to failure testing. No statistically significant difference in tendon displacement was observed from 200 to 500 cycles. Statistically significant higher stiffness was observed in IS when compared with DSLA (P = .005). Similarly, IS demonstrated significantly higher ultimate failure load as compared with DSLA (P = .001). Modes of failure observed for DSLA was mostly due to suture failure (7/8) and anchor pull-out (1/8) while IS resulted in mostly LHBT (4/6) or biceps (2/6) tears. DSLA failure load were compared with previous studies and similar results were noted. After cyclical loading, tendon displacement in DLSA technique was not significantly different from IS technique. Despite the higher failure loads associated with IS techniques in the present study, absolute peak load characteristics of DLSA were similar to previous studies. Hence, DLSA technique can be considered as a suitable alternative to IS fixation for biceps tenodesis.
This study aims to investigate the mechanical properties of a rotator cuff tear repaired with a polypropylene interposition graft in an ovine infraspinatus ex-vivo model. Twenty fresh shoulders from skeletally mature sheep were used in this study. A tear size of 20 mm from the tendon joint was created in the infraspinatus tendon to simulate a large tear in fifteen specimens. This was repaired with a polypropylene mesh used as an interposition graft between the ends of the tendon. Eight specimens were secured with mattress stitches while seven were secured to the remnant tendon on the greater tuberosity side by continuous stitching. Remaining five specimens with an intact tendon served as a control group. All specimens underwent cyclic loading with a universal testing machine to determine the ultimate failure load and gap distance. Gap distance increased with progressive cyclic loading through 3000 cycles for all repaired specimens. Mean gap distance after 3000 cycles for both continuous and mattress groups are 1.7 mm and 4.2 mm respectively (P = .001). Significantly higher mean ultimate failure load was also observed with 549.2 N in the continuous group, 426.6 N in the mattress group and 370 N in the intact group. The use of a polypropylene mesh as an interposition graft for large irreparable rotator cuff tears is biomechanically suitable and results in a robust repair that is comparable to an intact rotator cuff tendon. When paired with a continuous suturing technique, it demonstrates significantly resultant superior biomechanical properties that may potentially reduce re-tear rates after repairing large or massive rotator cuff tears.
Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism. Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67phox was involved in suramin-enhanced chondrocyte phenotype maintenance.Aims
Methods
Interleukin (IL)-1β is one of the major pathogenic regulators during the pathological development of intervertebral disc degeneration (IDD). However, effective treatment options for IDD are limited. Suramin is used to treat African sleeping sickness. This study aimed to investigate the pharmacological effects of suramin on mitigating IDD and to characterize the underlying mechanism. Porcine nucleus pulposus (NP) cells were treated with vehicle, 10 ng/ml IL-1β, 10 μM suramin, or 10 μM suramin plus IL-1β. The expression levels of catabolic and anabolic proteins, proinflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB-related signalling molecules were assessed by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis. Flow cytometry was applied to detect apoptotic cells. The ex vivo effects of suramin were examined using IDD organ culture and differentiation was analyzed by Safranin O-Fast green and Alcian blue staining.Aims
Methods
Proliferation, migration, and differentiation of anterior cruciate ligament (ACL) remnant and surrounding cells are fundamental processes for ACL reconstruction; however, the interaction between ACL remnant and surrounding cells is unclear. We hypothesized that ACL remnant cells preserve the capability to regulate the surrounding cells’ activity, collagen gene expression, and tenogenic differentiation. Moreover, extracorporeal shock wave (ESW) would not only promote activity of ACL remnant cells, but also enhance their paracrine regulation of surrounding cells. Cell viability, proliferation, migration, and expression levels of Collagen-I (COL-I) A1, transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF) were compared between ACL remnant cells untreated and treated with ESW (0.15 mJ/mm2, 1,000 impulses, 4 Hz). To evaluate the subsequent effects on the surrounding cells, bone marrow stromal cells (BMSCs)’ viability, proliferation, migration, and levels of Type I Collagen, Type III Collagen, and tenogenic gene (Aims
Methods
The function of the shoulder joint has traditionally been evaluated based on range of motion (ROM) in predefined anatomical planes and also by using functional scores, which assessed shoulder function based on the ability to conduct certain activities of daily living (ADLs). However, measuring ROM only in terms of flexion-extension, abduction-adduction and internal-external rotation may under-account for the 3-dimensional mobility of the shoulder joint. Furthermore, functional scores, such as the Oxford shoulder score or American shoulder and elbow surgeons (ASES) score, are subjective measures and are not an accurate assessment of shoulder joint function. In this study, we proposed the use of the globe model of the shoulder joint which can be used to provide an objective measure of the global ROM and also function of the shoulder joint – termed the Global and Functional arc of motion (GAM and FAM). Thirty-three young, healthy male patients (23.7 ± 1.5 years) were recruited and tasked to perform eight ADLs and a full humeral circumduction movement which represented their active global ROM. Reflective markers were placed in accordance to the International Society of Biomechanics (ISB) and optical-based motion capture cameras were used to track relative motion of the dominant humerus with respect to the thorax (i.e. thoracohumeral motion). The GAM and FAM were generated by plotting the thoracohumeral on a spherical coordinate system during global ROM and the eight ADLs respectively. Shoulder joint global ROM and function were quantified by calculating the area enclosed by the closed loop of GAM and FAM respectively. The spherical coordinate system, or more commonly referred to as the globe model, describes thoracohumeral movement using plane of elevation (POE), angle of elevation (AOE) and rotation. In our model, POE and AOE represents longitude and latitude of the globe respectively, and rotation is depicted using a red-green-blue (RGB) colour scale. Overall, subject's GAM of the shoulder joint covered an area of 4.64 ± 0.48 units2 compared to only 1.12 ± 0.26 units2 for the FAM. Subjects only required 24.4 ± 5.7 % of their global shoulder ROM for basic daily functioning. Studies that reduced shoulder joint movement into planar movements (i.e. sagittal, coronal and rotation) do not account for the 3-dimensional nature of the joint and doing so may overestimate the requirement of the shoulder joint for ADLs relative to its ROM in each plane. While others have attempted to use the globe model, such studies tend to reduce the globe into its descriptive angles (i.e. POE, AOE and rotation), reducing its intuitiveness. In contrast, by keeping an intact globe, the proposed globe model was more intuitive and yet capable of quantifying both shoulder joint global ROM and function. Doing so, we found that young healthy subjects only required approximately a quarter of their global ROM of the shoulder joint to complete the most common daily tasks, which was significantly less than what was previously reported.
Bone metastases from renal cell carcinoma are aggressive, osteolytic lesions that often require operative intervention for fracture prophylaxis, fracture fixation or palliation. The lesions are hypervascular and intraoperative bleeding is a serious challenge for the orthopaedic surgeon. The purpose of this study was to determine the efficacy of preoperative tumour embolization in reducing blood loss during operative management of renal cell carcinoma metastases to bone. Patients were identified from a prospectively accumulated database (1996–2006). Inclusion criteria included operative management for renal cell metastasis to the pelvis or appendicular skeleton. Patients that were not embolised preoperatively due to renal insufficiency or obesity were excluded. Embolizations were performed the day of surgery by an interventional radiologist. Post-embolization runs were used to determine the percentage of blood flow reduction to the tumour. Variables analyzed included patient age, gender, location of tumour, surgical procedure, surgical time, number of units of packed red blood cells (PRBC) transfused, estimated intraoperative blood loss (EBL) and percentage embolised according to the post-embolization run. Student’s t-test was used to determine the effects of percentage embolization on EBL and number of units of transfused PRBCs. Thirty-five cases (twenty-eight patients) met the inclusion criteria. There were twenty males and eight females with an average age of sixty-five years (range, forty-three to eighty-nine years). The most common metastatic sites were the femur (nineteen cases), humerus (seven cases) and pelvis (six cases). There were ten cases of intramedullary nailing and twenty-five cases of tumor resection and reconstruction. Average surgical time was 4.5 hours (range, 0.75–10 hours) and average EBL was 1.5 litres (range, 0.25–12 litres). Embolization that successfully blocked at least 75% of the blood flow to the tumour significantly decreased surgical EBL (3.2 vs 0.6 litres, P<
0.05) and units of PRBCs transfused (5.6 vs 1.9, P=0.05) compared to those that did not. Two embolization-associated complications occurred including one case of toe gangrene and one case of muscle ischemia. Preoperative embolization significantly reduces blood loss and red blood cell transfusions resulting from surgical stabilization of renal cell metastases to bone. Close communication between the orthopaedic surgeon and interventional radiologist is imperative to maximise these benefits.