Finite element analysis (FEA) has been applied for the biomechanical analysis of acetabular dysplasia, but not for biomechanical studies of periacetabular osteotomy (PAO) or those performing analysis taking into consideration the severity of acetabular dysplasia. This study aimed to perform biomechanical evaluation of changes in stress distribution following PAO and to determine the effect of the severity of developmental dysplasia of the hip (DDH) using three-dimensional FEA. A normal model was designed with a 25° center-edge (CE) angle and a 25° vertical-center-anterior margin (VCA) angle. DDH models were designed with CE and VCA angles each of 10, 0, or −10°. Post-PAO models were created by separating each DDH model and rotating the acetabular bone fragment in the anterolateral direction so that the femoral head was covered by the acetabular bone fragment, with CE and VCA angles each at 25°. Compared to the normal hip joint model, the DDH models showed stress concentration in the acetabular edge and contacting femoral head, and higher stress values; stress increased with decreasing CE and VCA angles. Compared to the DDH models, the post-PAO models showed near-normal patterns of stress distribution in the acetabulum and femoral head, with stress concentration areas shifted from the lateral to medial sides. Stress dispersion was especially apparent in the severe acetabular dysplasia models. PAO provided greater decreases in the maximum values of von Mises stress in the load-bearing area of the acetabulum and femoral head when applied to the DDH models of higher degrees of severity, although the values increased with increasing severity of DDH. PAO is expected to provide biomechanical improvement of the hip joint, although the results also suggest a limitation in the applicability of PAO for the patients with severe acetabular dysplasia.
The vertical-centre-anterior margin (VCA) angle quantifies the anterior cover of the femoral head. However, when the femoral head is deformed it may be difficult to identify its centre. We have therefore created a new index, the anterior acetabular head index (AAHI) which is measured on the false-profile radiograph. We measured the VCA and AAHI angles in 312 hips in which the centre-edge angle was >
25°. There were 250 patients, 86 men and 164 women, whose ages ranged from 20 to 65 years. The mean AAHI was 84.1% (81.7% in women and 88.5% in men). There was a correlation between the AAHI and VCA angles. Our data suggest that the AAHI is useful in the evaluation of anterior acetabular cover and that it is higher in men than in women.