Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 59 - 59
1 Dec 2021
Chisari E Cho J Wouthuyzen M Friedrich AW Parvizi J
Full Access

Aim

A growing number of recent investigations on the human genome, gut microbiome, and proteomics suggests that the loss of mucosal barrier function, particularly in the gastrointestinal tract, may substantially affect antigen trafficking, ultimately influencing the close bidirectional interaction between the gut microbiome and the immune system. This cross-talk is highly influential in shaping the host immune system function and ultimately shifting genetic predisposition to clinical outcome. Therefore, we hypothesized that a similar interaction could affect the occurrence of acute and chronic periprosthetic joint infections (PJI).

Method

Multiple biomarkers of gut barrier disruption were tested in parallel in plasma samples collected as part of a prospective cohort study of patients undergoing revision arthroplasty for aseptic or PJI (As defined by the 2018 ICM criteria). All blood samples were collected before any antibiotic was administered. Samples were tested for Zonulin, soluble CD14 (sCD14), and lipopolysaccharide (LPS) using commercially available enzyme-linked immunosorbent assays. Statistical analysis consisted of descriptive statistics and ANOVA.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 73 - 73
1 Dec 2021
Cho J Goswami K Sukhonthamarn K Parvizi J Arnold W
Full Access

Aim

The efficacy of various irrigation solutions in removing microbial contamination of a surgical wound and reducing the rate of subsequent surgical site infection (SSI), has been demonstrated extensively. However, it is not known if irrigation solutions have any activity against established biofilm. This issue is pertinent as successful management of patients with periprosthetic joint infection (PJI) includes the ability to remove biofilm established on the surface of implants and necrotic tissues. The purpose of this study was to evaluate the efficacy of various irrigation solutions in eradicating established biofilm, as opposed to planktonic bacteria, in a validated in vitro model.

Method

Established biofilms of Staphylococcus aureus and Escherichia coli were exposed to different irrigation solutions that included Polymyxin 500,000U/L plus bacitracin 50,000U/L, Vancomycin 1g/L, Gentamicin 80mg/L, Normal saline 0.9%, off-the-shelf Betadine 0.3%, Chlorhexidine 0.05%, Benzalkonium 1.3g/L, Sodium hypochlorite 0.125%, and Povidone-iodine 0.5%. Each experiment was conducted in a 96-well microtiter plate with a peg lid and standardized per the MBEC assay manufacturer's protocol. Following 2 minutes of solution exposure to the irrigation solution, residual biofilms were recovered by sonication. Outcome measures for antibiofilm efficacy were residual colony forming units (CFU) and optical density (690nm). Experiments were conducted in 24 replicates and the observations recorded by two blinded observers. Statistical analysis involved t-tests with Bonferonni adjustment.