header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 81 - 81
1 Nov 2021
Scomazzon L Dubus M Chevrier J Varin-Simon J Braux J Baldit A Gangloff S Mauprivez C Reffuveille F Kerdjoudj H
Full Access

Introduction and Objective

Guided Bone Regeneration (GBR) uses biodegradable collagen membranes of animal origin tissues (dermis and pericardium). Their barrier effect prevents soft tissues to interfere with the regeneration of alveolar bone. However, their xenogeneic origin involves heavy chemical treatments which impact their bioactivity. Wharton's Jelly (WJ) from the umbilical cord is a recoverable surgery waste. WJ is mostly made from collagen fibers, proteoglycans, hyaluronic acid, and growth factors. WJ with immunologically privileged status and bioactive properties lends credence to its use as an allograft. Nevertheless, low mechanical properties limit its use in bone regenerative strategies. Herein, our objective is to develop a crosslinked WJ-based membrane to improve its strength and thus its potential use as a GBR membrane.

Materials and Methods

The umbilical cords are collected after delivery and then stored at −20°C until use. The WJ membranes (1 × 5 × 12 mm) were obtained after the removal of blood vessels and amniotic tissue, washed, lyophilized, and stored at −20°C. WJ membranes were incubated in genipin solutions in decreasing concentrations (0.3 g / 100 mL − 0.03 g / 100 mL) for 24 hours at 37°C. The crosslinking degree was estimated by ninhydrin and confirmed by FTIR (Fourier-transform infrared spectroscopy) assays. The swelling rate was obtained after the rehydration of dry crosslinked WJ-membrane for 10 min in D-PBS. The mechanical properties were assessed in hydrated conditions on a tensile bench. The resistance to the degradation was evaluated by collagenase digestion (1 mg/mL for 60 hours) assay. The cytotoxicity of crosslinked WJ-membrane was evaluated in accordance with the standard ISO.10993-5 (i.e. Mitochondrial activity and Lactate Dehydrogenase release) against Mesenchymal Stem Cells (MSCs). Finally, the MSCs colonization and proliferation were followed after 21 days of culture on crosslinked WJ-membranes.