The function of the shoulder joint has traditionally been evaluated based on range of motion (ROM) in predefined anatomical planes and also by using functional scores, which assessed shoulder function based on the ability to conduct certain activities of daily living (ADLs). However, measuring ROM only in terms of flexion-extension, abduction-adduction and internal-external rotation may under-account for the 3-dimensional mobility of the shoulder joint. Furthermore, functional scores, such as the Oxford shoulder score or American shoulder and elbow surgeons (ASES) score, are subjective measures and are not an accurate assessment of shoulder joint function. In this study, we proposed the use of the globe model of the shoulder joint which can be used to provide an objective measure of the global ROM and also function of the shoulder joint – termed the Global and Functional arc of motion (GAM and FAM). Thirty-three young, healthy male patients (23.7 ± 1.5 years) were recruited and tasked to perform eight ADLs and a full humeral circumduction movement which represented their active global ROM. Reflective markers were placed in accordance to the International Society of Biomechanics (ISB) and optical-based motion capture cameras were used to track relative motion of the dominant humerus with respect to the thorax (i.e. thoracohumeral motion). The GAM and FAM were generated by plotting the thoracohumeral on a spherical coordinate system during global ROM and the eight ADLs respectively. Shoulder joint global ROM and function were quantified by calculating the area enclosed by the closed loop of GAM and FAM respectively. The spherical coordinate system, or more commonly referred to as the globe model, describes thoracohumeral movement using plane of elevation (POE), angle of elevation (AOE) and rotation. In our model, POE and AOE represents longitude and latitude of the globe respectively, and rotation is depicted using a red-green-blue (RGB) colour scale. Overall, subject's GAM of the shoulder joint covered an area of 4.64 ± 0.48 units2 compared to only 1.12 ± 0.26 units2 for the FAM. Subjects only required 24.4 ± 5.7 % of their global shoulder ROM for basic daily functioning. Studies that reduced shoulder joint movement into planar movements (i.e. sagittal, coronal and rotation) do not account for the 3-dimensional nature of the joint and doing so may overestimate the requirement of the shoulder joint for ADLs relative to its ROM in each plane. While others have attempted to use the globe model, such studies tend to reduce the globe into its descriptive angles (i.e. POE, AOE and rotation), reducing its intuitiveness. In contrast, by keeping an intact globe, the proposed globe model was more intuitive and yet capable of quantifying both shoulder joint global ROM and function. Doing so, we found that young healthy subjects only required approximately a quarter of their global ROM of the shoulder joint to complete the most common daily tasks, which was significantly less than what was previously reported.
Age-related fragility fractures are highly correlated with the loss of bone integrity and deteriorated morphology of the osteocytes. Previous studies have reported low-magnitude high-frequency vibration(LMHFV) promotes osteoporotic diaphyseal fracture healing to a greater extent than in age-matched normal fracture healing, yet how osteoporotic fractured bone responds to the mechanical signal has not been explored. As osteocytes are prominent for mechanosensing and initiating bone repair, we hypothesized that LMHFV could enhance fracture healing in ovariectomized metaphyseal fracture through morphological changes and mineralisation in the osteocyte Lacuno-canalicular Network(LCN). As most osteoporotic fractures occur primarily at the metaphysis, an osteoporotic metaphyseal fracture model was established. A total of 72 six-month old female Sprague-Dawley rats (n=72) were obtained(animal ethical approval ref: 16–037-MIS). Half of the rats underwent bilateral ovariectomy(OVX) and kept for 3 months for osteoporosis induction. Metaphyseal fracture on left distal femur was created by osteotomy and fixed by a plate. Rats were then randomized to (1) OVX+LMHFV(20 mins/day and 5 days/week, 35Hz, 0.3g), (2) OVX control, (3) SHAM+LMHFV, (4) SHAM control. Assessments of morphological structural changes, functional markers of the LCN(Scanning Electron Microscopy, FITC-Imaris, immunohistochemistry), mineralization status(EDX, dynamic histomorphometry) and healing outcomes(X-ray, microCT, mechanical testing) were performed at week 1, 2 and 6 post-fracture. One‐way ANOVA with post-hoc test was performed. Statistical significance was set at p < 0.05. Our results showed LMHFV could significantly enhance the morphology of the LCN. There was a 65.3% increase in dendritic branch points(p=0.03) and 93% increase in canalicular length(p=0.019) in the OVX-LMHFV group at week 2 post-fracture. Besides, a similar trend was also observed in the SHAM+LMHFV group, with a 43.4% increase in branch points and 53% increase in canaliculi length at week 2. A significant increase of E11 and DMP1 was observed in the LMHFV groups, indicating the reconstruction of the LCN. The decreasing sclerostin and increasing FGF23 at week 1 represented the active bone formation phase while the gradual increase at week 6 signified the remodelling phase. Furthermore, Ca/P ratio, mineral apposition rate and bone formation rate were all significantly enhanced in the OVX+LMHFV group. The overall bone mineral density in BV was significantly raised in the OVX+LMHFV group at week 2(p=0.043) and SHAM+LMHFV at week 6(p=0.04). Quantitative analysis of microCT showed BV/TV was significantly increased at week 2 in OVX+LMHFV group(p=0.008) and week 6(p=0.001) in both vibration groups. In addition, biomechanical testing revealed that the OVX+LMHFV group had a significantly higher ultimate load(p=0.03) and stiffness(p=0.02) at week 2. To our best knowledge, this is the first report to illustrate LMHFV could enhance osteocytes' morphology, mineralisation status and healing outcome in a new osteoporotic metaphyseal fracture animal model. Our cumulative data supports that the mechanosensitivity of bone would not impair due to osteoporosis. The revitalized osteocyte LCN and upregulated osteocytic protein markers implied a better connectivity and transduction of signals between osteocytes, which may foster the osteoporotic fracture healing process through an enhanced mineralisation process. This could stimulate further mechanistic investigations with potential translation of LMHFV to our fragility fracture patients.
Mathematical modeling provides an efficient and easily reproducible method for the determination of joint forces under in vivo conditions. The need for these new modeling methodologies is needed in the lumbar spine, where an understanding of the loading environment is limited. Few studies using telemetry and pressure sensors have directly measured forces borne by the spine; however, only a very small number of subjects have been studied and experimental conditions were not ideal for giving total forces acting in the spine. As a result, alternative approaches for investigating the lumbar spine across different clinical pathologies are essential. Therefore, the objective of this study was to develop of an inverse dynamic mathematical model for theoretically deriving in-vivo contact forces as well as musculotendon forces in patients having healthy, symptomatic, pathological and post-operative conditions of the lumbar spine. Fluoroscopy and 3D-to-2D image registration were used to obtain kinematic data for patients performing flexion-extension of the lumbar spine. This data served as input into the multi-body, mathematical model. Other inputs included patient-specific bone geometries, recreated from CT, and ground reaction forces. Vertebral bones were represented as rigid bodies, while massless frames symbolized the lower body, torso and abdominal wall (Figure 1). In addition, ligaments were selected and modeled as linear spring elements, along with relevant muscle groups. The muscles were divided into individual fascicles and solved for using a pseudo-inverse algorithm which enabled for decoupling of the derived resultant torques defining the desired kinetic trajectory for the muscles. The largest average contact forces in the model for healthy, symptomatic, pathological, and post-operative lumbar spine conditions occurred at maximum flexion at L4L5 level and were predicted to be 2.47 BW, 2.33 BW, 3.08 BW, and 1.60 BW, respectively. The FE rotation associated with these theoretical force values was 43.0° in healthy, 40.5° in symptomatic, 44.4° in pathological, and 22.8° in post-operative patients. The smallest forces occurred as patients approached the upright, standing position, followed by slight increases in the contact force at full extension. The theoretically derived muscle forces exhibited similar contributory force profiles in the intact spine (healthy, symptomatic, and pathologic); however, surgically implanted spines experienced an increase in the contribution of the external oblique muscles accompanied with decreased slope gradients in the muscle force profiles (Figure 2). These altered force patterns may be associated with the decrease in the predicted contact forces in post-operative patients. In addition, the decreased slope gradients in surgically implanted patients corresponds with the observed difficulty of performing the prescribed motion, possibly due to improper muscle firing, thereby leading to slower motion cycles and less ranges-of-motion. On the contrary, patients having an intact spine performed the activity at a faster speed and to greater ranges-of-motion, which corresponds with the higher contact forces derived in the model. In conclusion, this research study presented the development of a mathematical modeling approach utilizing patient-specific data to generate theoretical in-vivo joint forces. This may serve to help progress the understanding for the kinetic characteristics of the native and surgically implanted lumbar spine.
Numerous studies have been conducted to investigate the kinematics of the lumbar spine, and while many have documented its intricacies, few have analyzed the complex coupled out-of-plane rotations inherent in the low back. Some studies have suggested a possible relationship between patients having low back pain (LBP) or degenerative conditions in the lumbar region and various degrees of restricted, excessive, or poorly-controlled lumbar motion. Conversely, others in the orthopedic community maintain there has been no distinct correlation found between spinal mobility and clinical symptoms. The objective of this study was to evaluate both the in-plane and coupled out-of-plane rotational magnitudes about all three motion axes in both symptomatic and asymptomatic patients. Ten healthy, 10 LBP, and 10 degenerative patients were CT scanned and evaluated under fluoroscopic surveillance while performing flexion/extension of the lumbar spine. Three-dimensional, patient-specific bone models were created and registered to fluoroscopic images using a 3D-to-2D model fitting algorithm. Introduction
Methods
The purpose of this study is to investigate the incidence of patients with isolated bundle ACL tear (either isolated posterolateral or anteromedial bundle) during arthroscopy, and its correlation with physical exam. The relevant surgical technique to reconstruct the ligament is discussed. Between September 2006 and March 2009, patients with ACL injuries who received double- bundle ACL reconstruction were reviewed retrospectively. A specialist fellow performed a physical exam before and after anaesthesia. Intraop status of the ACL tear was assessed with correlation of the physical findings. Patients with isolated bundle tear would receive anatomical reconstruction of the torn bundle with preservation of the intact bundle. Double-bundle hamstrings reconstruction would be performed to those with complete tear. Medical notes of 159 patients were reviewed. There were 118 patients (74%) with complete ACL tear, 36 (23%) with isolated AM tear, and 5 (3%) with PL tear. For patients with complete ACL tear, 94% and 100% had positive Lachman, 50% and 87% had positive pivot shift, before and after anaesthesia. For patients with isolated AM tear, 100% had positive Lachman, 36% and 19% had positive pivot shift, before and after anaesthesia. For patients with isolated PL tear, 100% had positive Lachman, 20% and 80% had positive pivot shift, before and after anaesthesia. With better understanding of ACL, patients with isolated-bundle tear can preserve their intact bundle during reconstruction. However, in this study we find that physical exam correlates poorly with the arthroscopic findings. Further imaging (e.g. MRI) may be helpful to differentiate patients from isolated- bundle tear to complete tear.