Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 126 - 126
1 Jan 2017
Gasbarrini A Bandiera S Barbanti Brodano G Terzi S Ghermandi R Cheherassan M Babbi L Girolami M Boriani S
Full Access

In case of spine tumors, when en bloc vertebral column resection (VCR) is indicated and feasible, the segmental defect should be reconstructed in order to obtain an immediate stability and stimulate a solid fusion. The aim of this study is to share our experience on patients who underwent spinal tumor en bloc VCR and reconstruction consecutively.

En bloc VCR and reconstruction was performed in 138 patients. Oncological and surgical staging were performed for all patients using Enneking and Weinstein-Boriani-Biagini systems accordingly. Following en bloc VCR of one or more vertebral bodies, a 360° reconstruction was made by applying posterior instrumentation and anterior implant insertion. Modular carbon fiber implants were applied in 111 patients, titanium mesh cage implants in 21 patients and titanium expandable cages in 3 patients; very recently in 3 cases we started to use custom made titanium implants. The latter were prepared according to preoperative planning of en bloc VCR based on CT-scan of the patient, using three dimensional printer.

The use of modular carbon fiber implant has not leaded to any mechanical complications in the short and long term follow-up. In addition, due to radiolucent nature of this implant and less artifact production on CT and MRI, tumor relapse may be diagnosed and addressed earlier in compare with other implants, which has a paramount importance in these group of patients. We did not observe any implant failure using titanium cages. However, tumor relapse identification may be delayed due to metal artifacts on imaging modalities.

Custom- made implants are economically more affordable and may be a good alternative choice for modular carbon fiber implants. The biocompatibility of the titanium make it a good choice for reconstruction of the defect when combined with bone graft allograft or autograft. Custom made cages theoretically can reproduce patients own biomechanics but should be studied with longer follow-up.