Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 11 - 11
1 Nov 2018
Maniscalco P Ciatti C Ghidoni L Ghidoni G Strigini G Pogliacomi F Ceccarelli F
Full Access

Neck modularity has been proposed to improve THA accuracy, thanks to the close restoration of anatomy, however it has been associated with issues like early breakages or corrosion. Our Hospital has been using neck modularity since the 90s, so we analyzed retrospectively implants performed between January 2000 and December 2014. The minimum follow up was 1Y. The cohort was composed of 1,033 THAs or 951 patients (82 bilateral), of which 643 females and 390 males. Average patient age was 67.7Y. THA indications were primary Osteoarthritis (80.9%), Fracture (9.0%), Congenital Dysplasia or Congenital Luxation (4.2%), Osteonecrosis (3.2%), other causes (2,7%). The stems used were all cementless, 381 anatomically shaped (36.9%), 635 straight (61.5%), 17 short MIS (1.6%). All necks used were made of Titanium alloy. 419 implants (40.5%) were manufactured by Wright Medical, while 614 (59.5%) were produced by Adler Ortho. A total of 37 revisions has been reported, mainly due to periprosthetic fractures (32.4%), luxation (24.3%), implant mobilization (18.9%) and implant breakage (16.2%). We have recorded 3 modular neck breakages. 4 patients required re-revisions, because of luxations (3) and neck breakage (1). The overall survival rate was 96.4%. We did not observe any component corrosion, probably thanks to the exclusive use of Titanium necks. We had a neck breakages rate of 0.29% and a luxation rate of 0.87%, lower than normally reported in the literature. In conclusion, our experience suggests as neck modularity could be a safe and effective way to reconstruct the proximal femur in THA patients.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 186 - 186
1 Jul 2014
Falcinelli C Schileo E Balistreri L Baruffaldi F Toni A Albisinni U Ceccarelli F Milandri L Viceconti M Taddei F
Full Access

Summary Statement

In a retrospective study, FE-based bone strength from CT data showed a greater ability than aBMD to discriminate proximal femur fractures versus controls.

Introduction

Personalised Finite Element (FE) models from Computed Tomography (CT) data are superior to bone mineral density (BMD) in predicting proximal femoral strength in vitro [Cody, 1999]. However, results similar to BMD were obtained in vivo, in retrospective classification of generic prevalent fractures [Amin, 2011] and in prospective classification of femoral fractures [Orwoll, 2009]. The aim of this work is to test, in a case-control retrospective study, the ability of a different, validated FE modelling procedure [Schileo, 2008] to: (i) discriminate between groups of proximal femoral fractures and controls; (ii) individually classify fractures and controls.