Intraspinal re-implantation after traumatic avulsion of the brachial plexus is a relatively new technique. Three different approaches to the spinal cord have been described to date, namely the posterior scapular, anterolateral interscalenic multilevel oblique corpectomy and the pure lateral. We describe an anatomical study of the pure lateral approach, based on our clinical experience and studies on cadavers.
We have treated 175 patients with a chordoma over a ten-year period. Only two had a family history of the condition and we describe these in this paper. In one patient the tumour was at the craniocervical junction and in the other the lesion affected the sacrum. We have undertaken a literature review of familial chordoma and have identified chromosomal abnormalities associated with the condition.
We present data relating to the Bryan disc arthroplasty for the treatment of cervical spondylosis in 46 patients. Patients with either radiculopathy or myelopathy had a cervical discectomy followed by implantation of a cervical disc prosthesis. Patients were reviewed at six weeks, six months and one year and assessment included three outcome measures, a visual analogue scale (VAS), the short form 36 (SF-36) and the neck disability index (NDI). The results were categorised according to a modification of Odom’s criteria. Radiological evaluation, by an independent radiologist, sought evidence of movement, stability and subsidence of the prosthesis. A highly significant difference was found for all three outcome measurements, comparing the pre-operative with the post-operative values: VAS (Z = 6.42, p <
0.0001), SF-36 (mental component) (Z = −5.02, p <
0.0001), SF-36 (physical component) (Z = −5.00, p <
0.0001) and NDI (Z = 7.03, p <
0.0001). The Bryan cervical disc prosthesis seems reliable and safe in the treatment of patients with cervical spondylosis.
The NASCIS studies reported improved long-term neurological recovery when high dose methylprednisolone was administered following spinal cord injury. To determine if there is correct implementation of the NASCIS protocols. Prospective observational study. The admission Frankel grade and ASIA neurological classification were recorded. 100 patients with complete or incomplete spinal cord injuries were studied during a 24 month period. Outcome Measures: Correct administration of methyprednisolone. The mean ASIA score was 192 and median Frankel grade was C. Only 25% of the patients received methyl-prednisolone according to the NASCIS regime. “Evidence Based Medicine” is not being adopted.
Pedicle screws allow for biomechanically secure fixation of the spine. However if they are misplaced they may effect the strength of the fixation, damage nerve roots or compromise the spinal cord. For these reasons image guidance systems have been developed to help with the accuracy of screw placement. The accuracy of pedicle screw placement outside the lumbar spine is not well published. To determine the accuracy of pedicle screw placement using CT scanning post operatively. Cortex perforations were graded in 2mm steps. Prospective observational study. Plain x-rays are inaccurate for determining screw placement and therefore high definition CT scanning was used. The screw positioning on the post-operative CT scans was independently determined by a research registrar who was not present at the time of surgery. Screw position and clinical sequelae of any malposition. Thirty patients (13 F:17 M) with segmental instability. Twelve were for metastatic disease, seven for trauma, seven for spondylolisthesis, three for atlanto-axial instability and one for a vertebral haemangioma. All patients were operated on by the senior author. One hundred and seventy six pedicle screws were inserted in the thirty patients over the 20 month study period. Six screws violated the lateral cortex of the pedicle but none perforated the medial cortex. There were no adverse neurological sequelae. The findings from this study will serve as a good comparison with future studies on pedicle screw placement, which may claim to improve accuracy and safety by the use of image guidance systems, electrical impedance or malleable endoscopes.
Transarticular screws at the C1 to C2 level of the cervical spine provide rigid fixation, but there is a danger of injury to a vertebral artery. The risk is related to the technical skill of the surgeon and to variations in local anatomy. We studied the grooves for the vertebral artery in 50 dry specimens of the second cervical vertebra (C2). They were often asymmetrical, and in 11 specimens one of the grooves was deep enough to reduce the internal height of the lateral mass at the point of fixation to ≤2.1 mm, and the width of the pedicle on the inferior surface of C2 to ≤2 mm. In such specimens, the placement of a transarticular screw would put the vertebral artery at extreme risk, and there is not enough bone to allow adequate fixation. Before any decision is made concerning the type of fixation to be used at C2 we recommend that a thin CT section be made at the appropriate angle to show both the depth and any asymmetry of the grooves for the vertebral artery.