Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 61 - 61
1 Jan 2016
Muratoglu O Bichara D Malchau E Hylleholt N Cakmak S
Full Access

Introduction

UHMWPE particle-induced osteolysis is one of the major causes of arthroplasty revisions. Recent in vitro findings have suggested that UHMWPE wear particles containing vitamin-E (VE) may have reduced functional biologic activity and decreased potential to cause osteolysis (Bladed C. L. et al, JBMR B 2012 and 2013). This is of significant importance since VE-stabilized cross-linked UHMWPEs were recently introduced for clinical use, and there is no in vivo data determining the effects of wear debris. In this study we hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE (VE-UHMWPE) would cause reduced levels of osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE.

Methodology

Study groups were the following: 1). Radiation cross-linked VE-UHMWPE (0.8% by weight) diffused after 100 kGy; 2). Radiation cross-linked virgin UHMWPE (virgin UHMWPE); 3). Sham controls. Particle generation and implantation: UHMWPE was sent to Bioengineering Solutions (Oak Park, IL) for particle generation. After IACUC approval, C57BL/6 mice (n=12 for each group) received equal amount of particulate debris (3mg) overlying the calvarium and were euthanized after 10 days. Micro-CT scans: High resolution micro-CT scans were performed using a set voltage of 70 kV and current of 70 µA. Topographical Grading Scale: Each calvarial bone was blindly scored using the following scale: 0=No osteolysis, defined as intact bone; 1=Minimal osteolysis, affecting 1/3 or less of the bone area; 2=Moderate osteolysis, affecting at least 2/3 of the bone area; 3=Severe osteolysis, defined as completely osteolytic bone. Histology: H&E and TRAP staining was done on tissue to confirm micro-CT findings and quantify osteoclasts. Statistical Analysis: Inter-rater analysis was done using Cohen's kappa analysis. An inter-rater coefficient >0.65 was considered as high inter-rater agreement. Comparison between groups was made using one-way ANOVA with post hoc Bonferroni correction for multiple comparisons. Correlations are reported as Spearman's rho. P-value<0.05 was considered statistically significant.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 255 - 255
1 Jul 2014
Bichara D Malchau E Sillesen N Cakmak S Muratoglu O
Full Access

Summary Statement

Vitamin E-UHMWPE particles have a reduced osteolysis potential in vivo when compared to virgin, highly cross-linked UHMWPE in a murine calvarial bone model.

Introduction

Ultra high-molecular weight polyethylene (UHMWPE) particle-induced osteolysis is one of the major causes of arthroplasty revisions. The lack of particle clearance from the joint inevitably leads to the upregulation of the inflammatory cascade, resulting in bone resorption and implant loosening. Recent in vitro findings (Bladed CL et al. ORS 2011 and J Biomed Mater Res B Appl Biomater, 2012) have suggested that UHMWPE wear particles containing vitamin-E (VE) may have reduced functional biologic activity and decreased potential to cause osteolysis. This is of significant importance since VE-stabilised cross-linked UHMWPEs were recently introduced for clinical use, and there is no in vivo data determining the effects of wear debris from this new generation of implants. In this study we hypothesised that particles from VE-stabilised, radiation cross-linked UHMWPE (VE-UHMWPE) would cause reduced levels of osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE.