Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 42 - 42
1 Mar 2021
Quarshie R Marway S Logishetty K Keane B Cobb JP
Full Access

Patients undergoing hip resurfacing arthroplasty (HRA) is typically reserved for highly active patients. Patient Reported Outcome Measures (PROMs) such as the Oxford Hip Score (OHS) are reported to have ceiling effects, which may limit physicians' ability to measure health gain in these patients. The Metabolic Equivalent of Task (MET) index is a validated compendium assigning energy expenditure to a wide range of activities; for example, a slow walk expends 2.9 kcal/kg/hour, golf expends 4.0 kcal/kg/hour, while moderate lacrosse typically expends 8.1 kcal/kg/hour. We hypothesized that for patients with high OHS (47–48) after HRA, the MET index could better discriminate between high-performing individuals.

We evaluated 97 consecutive HRA patients performed by a single surgeon. They prospectively completed an online Oxford Hip Score. They also listed three activities which they had performed independently in the preceding 2 weeks with a Likert-scale slider denoting intensity of effort. Matched data-sets were obtained from 51 patients, from which 23 had OHS of 47–48 at 6-months. Their activity with the highest MET index was selected for analysis. The 23 patients' OHS improved from 29.3 ± 7.0 preoperatively to 47.6 ± 0.5 after 6-months, while their MET indices improved from 8.5 ± 3.7 to 12.9 ± 3.5 kcal/kg/hr. The activities performed by these high-performance individuals ranged from the lowest, pilates (8.05 kcal/kg/hour), to highest, running at 22km/hr (23 kcal/kg/hour). 45% of patients undergoing HRA in this cohort had OHS of 47 and 48 at 6-months after surgery.

Unlike the OHS, the MET index described variation in physical activity in these high-performance individuals, and did so on an objective measurable scale.


Bone & Joint Research
Vol. 6, Issue 9 | Pages 542 - 549
1 Sep 2017
Arnold M Zhao S Ma S Giuliani F Hansen U Cobb JP Abel RL Boughton O

Objectives

Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness.

Methods

A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 522 - 529
1 Aug 2017
Ali AM Newman SDS Hooper PA Davies CM Cobb JP

Objectives

Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain.

Methods

A total of 16 composite tibias were implanted with an Oxford Domed Lateral Partial Knee implant using cutting guides to define tibial slope and resection depth. Four implant positions were assessed: standard (5° posterior slope); 10° posterior slope; 5° reverse tibial slope; and 4 mm increased tibial resection. Using an electrodynamic axial-torsional materials testing machine (Instron 5565), a compressive load of 1.5 kN was applied at 60 N/s on a meniscal bearing via a matching femoral component. Tibial strain beneath the implant was measured using a calibrated Digital Image Correlation system.