The acetabular labrum is an essential stabilizer of the hip joint, imparting its greatest effect in extreme joint positions where the femoral head is disposed to subluxation and dislocation. However, its stabilizing value has proved difficult to quantify. The objective of the present study was to assess the contribution of the entire acetabular labrum to mechanical joint stability. We introduce a novel “dislocation potential test” that utilizes a dynamic, cadaveric, robotic model that functions in real-time under load-control parameters to map the joint space for low-displacement determination of stability, and quantify using the “stability index”. Five fresh-frozen human cadaveric hips without labral tears were mounted to a six-degree-of-freedom robotic manipulator and studied in 2 distinct joint positions provocative for either anterior or posterior dislocation. Dislocation potential tests were run in 15° intervals, or sweep planes, about the face of the acetabulum. For each interval, a 100 N force vector was applied medially and swept laterally until dislocation occurred. Three-dimensional kinematic data from conditions with and without labrum were quantified using the stability index, which is the percentage of all directions a constant force can be applied within a given sweep plane while maintaining a stable joint.Background
Methods