Hip stem taper wear and corrosion is a multifactorial process involving mechanical, chemical and biological damage modes. For the most cases it seems likely that the mechanically driven fretting wear is accompanied by other damage modes like pitting corrosion, galvanic corrosion or metal transfer. Recent retrieval studies have reported that the taper surface topography may affect taper damage resulting from fretting and corrosion [1]. Therefore, the current study aimed to examine effects of different taper topography parameters and material combinations on taper mechanics and results regarding wear and corrosion have been investigated. Combined experimental and numerical studies were conducted using titanium, cobalt-chromium and stainless steel generic tapers (Figure1). Uniaxial tensile tests were performed to determine the mechanical properties of the materials examined. For the taper studies macro-geometry of ceramic ball heads (BIOLOX®Introduction
Materials and Methods
Recent literature demonstrates that the assembly load to connect ball head and femoral stem affects the taper junction fretting wear evolution in THR [1]. During assembly the surface profile peaks of the mostly threaded tapers are deformed. This contributes to the taper locking effect. Very little is known about this deformation process and its role in the evolution of fretting and wear. Therefore, this study aimed to experimentally determine the deformation of the profile peaks after the initial assembly process. 36 tapers of three different stem materials acc. to ISO5832-3 (titanium), ISO5832-9 (steel), ISO5832-12 (cobalt chromium) and 36 ceramic ball heads were tested under quasi-static (4kN) and dynamic (impaction) (3.7±0.3kN) axial assembly. Before and after loading 4 surface profiles in 90° offset were measured on each taper. Height differences of profile peaks and areas under profile curves were calculated and compared. Both parameters provide insights into the deformation behavior of the surface structure. Additionally, subsidence of tapers into ball heads was measured and subsidence rates were calculated with regard to varying impaction forces. Due to different thermal expansion coefficients tapers could be disconnected from ball heads by utilizing liquid nitrogen. Thus, further surface damage due to disassembly was avoided. Statistical analysis was performed using a Wilcoxon test (p<0.05).Introduction
Materials and Methods