This experimental study showed that platelet rich fibrin matrix can improve muscle regeneration and long-term vascularization without local adverse effects. Even though muscle injuries are very common, few scientific data on their effective treatment exist. Growth Factors (GFs) may have a role in accelerating muscle repair processes and a currently available strategy for their delivery into the lesion site is the use of autologous platelet-rich plasma (PRP). The present study is focused on the use of Platelet Rich Fibrin Matrix (PRFM), as a source of GFs.Summary Statement
Introduction
Primary human fibroblasts were seeded on collagen I membranes with aligned fibres (# 40133) with and randomly arranged fibres (# 40153). Cell proliferation was evaluated at 4, 8 and 12 days by spectrophotometry. Membrane sections were studied by immunohistochemistry and by confocal microscope on day 12 of culture. The middle third of the patellar tendon was lesioned bilaterally in 10 adult male New Zealand White rabbits and repaired on the right side by a graft (# 40133). The contralateral tendon was left untreated and served as control. Animals were euthanized 1 or 6 months after surgery and the tendon grafts subjected to histological examination.
Cells were homogeneously distributed, with a more marked orientation along the main membrane axis in batch 40133 than in 40153. The in vivo study showed that cell orientation and differentiation in the scaffold with aligned fibres was satisfactory, with decreased cellularity, good integration with the surrounding tissue and crimp formation. Inflammatory reaction or excessive implant neovascularization were never observed.