header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 9 - 9
1 Jan 2004
Burroughs B O’Connor D Sargent M Muratoglu O Rubash H Freiberg A Estok D Jasty M Harris W Deluzio K Krevolin J Wyss U Shen M
Full Access

A high proportion of complications following TKR occur at the patellofemoral articulation secondary to delami-nation and adhesive/abrasive wear. Electron beam cross-linking and melting has been shown to substantially reduce delamination and adhesive/abrasive wear in polyethylene tibial inserts. A series of in-vitro patella wear and fatigue tests were developed to explore the benefits of this material at the patellofemoral articulation.

Patellae (NKII, Sulzer Orthopedics, Inc., Austin, TX) were tested on an AMTI (Watertown, MA) knee simulator articulating against the trochlear grove of the femoral component. The simulator controlled flexion/ extension and patellofemoral contact force. Each test included patellae manufactured from conventional and electron beam crosslinked and melted polyethylene. Three different simulations were created: i) normal gait (5 million cycles) with optimal component alignment, ii) stair climbing (2 million cycles) with optimal component alignment, iii) stair climbing (2 million cycles) with 4° of femoral component internal rotation to simulate a component malalignment condition. In the last two simulations all patellae were artificially aged for 35 days in 80°C air to simulate one aspect of the long term oxidative state of each material.

In normal gait, the unaged conventional and highly cross-linked materials demonstrated similar behaviour. In stair climbing with optimal component alignment, the aged conventional patellae developed cracks by 2 million cycles. In stair climbing with component malalign-ment the aged conventional patellae developed cracks and delamination by 1 million cycles. None of the highly cross-linked components showed cracks or delamination. These results demonstrate the potential advantage of highly cross-linked polyethylene for the patella.