Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 17 - 17
1 Sep 2012
Boynton E Kim SY Rindlisbacher T Bleakney B Rosser B
Full Access

Purpose

Full-thickness tendon tears of the supraspinatus (SP) are common and can have a significant impact on shoulder function. To optimally treat supraspinatus tendon tears an accurate understanding of its musculotendinous architecture is needed. We have previously shown that the architecture of supraspinatus is complex. It has architecturally distinct regions: anterior and posterior, each of which is further subdivided into superficial, middle and deep parts (Kim et al., 2007). Data of FBL and PA of the torn supraspinatus could enhance clinical decision making and guide rehabilitative treatments (Ward et al., 2006). Currently, however, in vivo US quantification of the fiber bundle architecture of the distinct regions of supraspinatus in subjects with full-thickness tendon tears has not been investigated.

PURPOSE: To quantify architectural parameters within the distinct regions of supraspinatus in subjects with a full-thickness tendon tear using the US protocol that we previously developed (Kim et al., 2010), and to compare findings with age and gender matched normal controls.

Method

Twelve SP from eight subjects, mean age 576.0 years, were scanned using an US scanner (12 MHz). The SP was scanned in relaxed and contracted states. For the contracted state, SP was scanned with the shoulder in neutral rotation and 60 of active abduction. Fiber bundles of the anterior region (middle and deep) and posterior region (deep) could be visualized and measured. Muscle thickness, FBL, and PA were computed from US scans. Data was analyzed using Mann-Whitney and Wilcoxon Signed Rank Tests (P<0.05).


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 35 - 35
1 Mar 2008
Xing S Boynton E
Full Access

The effect of conditioned media from implant revision membranes on tartrate resistant acid phosphatase (TRAP) secretion following PE exposure was investigated. Human Monocytes were cultured on PE/collagen coverslips, and 50 uls of culture media, conditioned media from implant revision membranes, or conditioned media from synovium was added. Cultured media were collected, and analyzed for TRAP activity. Statistical analysis showed significantly greater release of TRAP in the media with the supplement of the conditioned media from implant revision membranes, indicating that the unknown factors in the conditioned media could accelerate monocyte-macrophage TRAP secretion. Identifying and blocking of the factors would be beneficial for long-term implant performance.

The purpose of this study was to investigate the effect of conditioned media from implant revision membranes on monocyte-macrophage tartrate resistant acid phosphatase (TRAP) secretion.

Conditioned media from implant revision membranes significantly enhanced monocyte-macrophage TRAP secretion following PE exposure in vitro.

Since TRAP has been related to bone resorption, identifying and blocking factors stimulating monocyte-macrophage TRAP section would be beneficial for preventing peri-implant bone resorption.

Monocytes isolated from human blood were cultured on PE/collagen coverslips, and 50 uls of fresh culture media, conditioned media from implant revision membrane, or conditioned media from synovium was added at time zero, day two and four. Cultured media were collected at day two, four and six, and analyzed for TRAP activity. As previously reported the conditioned media from the revision membranes contained TRAP activity greater than synovial membranes. Therefore the accumulative TRAP activity after culturing macrophages with PE was corrected by subtracting TRAP activity measured in the conditioned media prior to DNA normalization. Statistical analysis showed significantly greater release of TRAP in media with addition of the conditioned media from implant revision membrane when compared with either conditioned media from synovium or fresh culture media (p< 0.01, n=3). This result indicates that certain unknown soluble factors in the conditioned media from implant revision membrane could accelerate monocyte-macrophage TRAP secretion. Since TRAP enzyme has been related to bone resorption, greater TRAP secretion could lead to peri-implant osteolysis and subsequent implant loosening. Identifying and blocking of those factors would be ultimately beneficial for implant long-term clinical performance.

Funding: Canadian Orthopaedic Research Foundation and Arthritis Society


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 96 - 96
1 Mar 2008
Xing S Boynton E
Full Access

The blocking effects of anti-inflammatory cytokines and osteoprotergerin (OPG) on tartrate resistant acid phosphatase (TRAP) synthesis by monocyte-macrophages (MDMs) were investigated. Human Monocytes were cultured on PE/collagen coverslips supplemented with 50 mL of conditioned media from implant revision membranes, and anti-IL-6, anti-TNF- or OPG was added. Cultured media were collected and the cells were lysed. Both the cell releasates and lysates were analyzed for TRAP activity. Statistical analysis showed significantly inhibition of TRAP with addition of anti-IL-6 or anti-TNF-, but no inhibition was seen with addition of OPG. Blocking of TRAP with anti-inflammatory cytokines could provide a potential therapeutic method of preventing TRAP-associated peri-prosthesis osteolysis.

To investigate the blocking effects of anti-inflammatory cytokines and osteoprotergerin (OPG) on monocyte-macrophage tartrate resistant acid phosphatase (TRAP) syhthesis.

Either anti-IL-6 or anti-TNF- significantly inhibits monocyte-macrophage TRAP synthesis in vitro.

Since TRAP has been related to bone resorption, blocking monocyte-macrophage TRAP synthesis would be beneficial for preventing peri-prosthesis osteolysis.

Monocyte isolations were performed using blood from healthy donors. The isolated monocytes were cultured in triplicate on PE/collagen coverslips supplemented with 50 uls of fresh culture media or conditioned media from implant revision membrane. Anti-IL-6, anti-TNF-, or OPG at a concentration of 2 μg/mL was added at time zero, day two and four. The culture media were completely replaced with no addition at twenty-four hours prior to termination at day seven. On the terminating day, conditioned media were collected and the cells were lysed. Both the cell lysates and releasates were analyzed for TRAP activity, and the cell lysates were also assayed for DNA contents. The TRAP activity measured was normalized to the DNA contents. Statistical analysis showed significantly inhibition of TRAP with addition of anti-IL-6 (p< 0.01, n=3) or anti-TNF- (p< 0.01, n=3), but no inhibition was seen with addition of OPG. TRAP is believed to be mainly secreted by monocyte-macrophages and osteoclasts and associated with bone resorption. Therefore, these results suggest that the peri-prosthesis osteolysis be unlikely via the OPG-OPGL osteoclast activation axis, but possibly through the inflammatory cytokine pathway. Blocking of TRAP with anti-inflammatory cytokines could provide a potential therapeutic method of preventing peri-prosthesis osteolysis.

Funding from the Arthritis Society.