Long bone surgery and marrow instrumentation represent significant surgical insults, and may cause severe local and systemic sequelae following both planned and emergent surgery. Preconditioning is a highly conserved evolutionary endogenous protective mechanism, but finding a clinically safe and acceptable method of induction has proven difficult. Glutamine, a known inducer of the heat shock protein (HSP) response, offers pharmacological modulation of injury through clinically acceptable preconditioning. This effect has not been previously demonstrated in an orthopaedic model. The aim of the study was to test the hypothesis that glutamine preconditioning protects against the local and systemic effects of long bone trauma in a rodent model.Introduction
Aims
Compartment syndrome (CS) is a unique form of skeletal muscle ischaemia. N-acetyl cysteine (NAC) is an anti-oxidant in clinical use, with beneficial microcirculatory effects. Sprague-Dawley rats (n=6/group) were randomised into Control, CS and CS pre-treated with NAC (0.5g/kg i.p. 1 hr prior to induction) groups. In a post-treatment group NAC was administered upon muscle decompression. Cremasteric muscle was placed in a pressure chamber in which pressure was maintained at diastolic minus 10 mm Hg for 3 hours inducing CS, muscle was then returned to the abdominal cavity. At 24 hours and 7 days post-CS contractile function was assessed by electrical stimulation. Myeloperoxidase (MPO) activity was assessed at 24-hours. CS injury reduced twitch (50.4±7.7 vs 108.5±11.5, p<0.001; 28.1±5.5 vs. 154.7±14.1, p<0.01) and tetanic contraction (225.7±21.6 vs 455.3±23.3, p<0.001; 59.7±12.1 vs 362.9±37.2, p<0.01) compared with control at 24 hrs and 7 days respectively. NAC pre-treatment reduced CS injury at 24 hours, preserving twitch (134.3±10.4, p<0.01 vs CS) and tetanic (408.3±34.3, p<0.01 vs CS) contraction. NAC administration reduced neutrophil infiltration (MPO) at 24 hours (24.6±5.4 vs 24.6±5.4, p<0.01). NAC protection was maintained at 7 days, preserving twitch (118.2±22.9 vs 28.1±5.5, p<0.01) and tetanic contraction (256.3±37 vs 59.7±12.1, p<0.01). Administration of NAC at decompression also preserved muscle twitch (402.4±52; p<0.01 versus CS) and tetanic (402.4±52; p<0.01 versus CS) contraction, reducing neutrophil infiltration (24.6±5.4 units/g; p<0.01). These data demonstrate NAC provided effective protection to skeletal muscle from CS induced injury when given as a pre- or post-decompression treatment.