Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 37 - 37
1 Dec 2022
Contartese D Salamanna F Borsari V Pagani S Sartori M Martini L Brodano GB Gasbarrini A Fini M
Full Access

Breast cancer is the most frequent malignancy in women with an estimation of 2.1 million new diagnoses in 2018. Even though primary tumours are usually efficiently removed by surgery, 20–40% of patients will develop metastases in distant organs. Bone is one of the most frequent site of metastases from advanced breast cancer, accounting from 55 to 58% of all metastases. Currently, none of the therapeutic strategies used to manage breast cancer bone metastasis are really curative. Tailoring a suitable model to study and evaluate the disease pathophysiology and novel advanced therapies is one of the major challenges that will predict more effectively and efficiently the clinical response. Preclinical traditional models have been largely used as they can provide standardization and simplicity, moreover, further advancements have been made with 3D cultures, by spheroids and artificial matrices, patient derived xenografts and microfluidics. Despite these models recapitulate numerous aspects of tumour complexity, they do not completely mimic the clinical native microenvironment. Thus, to fulfil this need, in our study we developed a new, advanced and alternative model of human breast cancer bone metastasis as potential biologic assay for cancer research. The study involved breast cancer bone metastasis samples obtained from three female patients undergoing wide spinal decompression and stabilization through a posterior approach. Samples were cultured in a TubeSpin Bioreactor on a rolling apparatus under hypoxic conditions at time 0 and for up to 40 days and evaluated for viability by the Alamar Blue test, gene expression profile, histology and immunohistochemistry. Results showed the maintenance and preservation, at time 0 and after 40 days of culture, of the tissue viability, biological activity, as well as molecular markers, i.e. several key genes involved in the complex interactions between the tumour cells and bone able to drive cancer progression, cancer aggressiveness and metastasis to bone. A good tis sue morphological and microarchitectural preservation with the presence of lacunar osteolysis, fragmented trabeculae locally surrounded by osteoclast cells and malignant cells and an intense infiltration by tumour cells in bone marrow compartment in all examined samples. Histomorphometrical data on the levels of bone resorption and bone apposition parameters remained constant between T0 and T40 for all analysed patients. Additionally, immunohistochemistry showed homogeneous expression and location of CDH1, CDH2, KRT8, KRT18, Ki67, CASP3, ESR1, CD8 and CD68 between T0 and T40, thus further confirming the invasive behaviour of breast cancer cells and indicating the maintaining of the metastatic microenvironment. The novel tissue culture, set-up in this study, has significant advantages in comparison to the pre-existent 3D models: the tumour environment is the same of the clinical scenario, including all cell types as well as the native extracellular matrix; it can be quickly set-up employing only small samples of breast cancer bone metastasis tissue in a simple, ethically correct and cost-effective manner; it bypasses and/or decreases the necessity to use more complex preclinical model, thus reducing the ethical burden following the guiding principles aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes; it can allow the study of the interactions within the breast cancer bone metastasis tissue over a relatively long period of up to 40 days, preserving the tumour morphology and architecture and allowing also the evaluation of different biological factors, parameters and activities. Therefore, the study provides for the first time the feasibility and rationale for the use of a human-derived advanced alternative model for cancer research and testing of drugs and innovative strategies, taking into account patient individual characteristics and specific tumour subtypes so predicting patient specific responses.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 26 - 26
1 Dec 2022
Salamanna F Contartese D Borsari V Griffoni C Brodano GB Gasbarrini A Fini M
Full Access

The Spine Surgery Unit of IRCCS Istituto Ortopedico Rizzoli is dedicated to the diagnosis and the treatment of vertebral pathologies of oncologic, degenerative, and post-traumatic origin. To achieve increasingly challenging goals, research has represented a further strength for Spinal Surgery Unit for several years. Thanks to the close synergy with the Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, extensive research was carried out. The addition of the research activities intensifies a complementary focus and provides a unique opportunity of innovation. The overall goal of spine research for the Spine Surgery Unit and for the Complex Structure Surgical Sciences and Technologies is and has been to:

- investigate the factors that influence normal spine function;

- engineer and validate new and advanced strategies for improving segmental spinal instrumentation, fusion augmentation and grafting;

- develop and characterize advanced and alternative preclinical models of vertebral bone metastasis to test drugs and innovative strategies, taking into account patient individual characteristics and specific tumour subtypes so predicting patient specific responses;

- evaluate the clinical characteristics, treatment modalities, and potential contributing and prognostic factors in patients with vertebral bone metastases;

- realize customized prosthesis to replace vertebral bodies affected by tumours or major traumatic events, specifically engineered to reduce infections, and increase patients’ surgical options.

These efforts have made possible to obtain important results that favour the translation of basic research to application at the patient's bedside, and from here to routine clinical practice (without excluding the opposite pathway, in which the evidence generated by clinical practice helps to guide research). Although translational research can provide patients with valuable therapeutic resources, it is not risk-free. Thus, it is therefore necessary an always close collaboration between researchers and clinicians in order to guarantee the ethicality of translational research, by promoting the good of individuals and minimising the risks.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 65 - 65
1 Mar 2005
Borsari V Fini M Giardino R Torricelli P Rimondini L Giavaresi G Aldini NN
Full Access

Aims:. To test the effect of different surface roughness and fluorohydroxyapatite (FHA) coating on osteoblast-like cell (MG63) viability, proliferation, differentiation and synthetic activity, then to compare the various surfaces tested and try to identify an osteoblast parameter that can better explain the different behaviour of the tested surfaces observed in previous in vivo studies.

Methods: The tested materials were made of Ti6Al4V coated with Ti and with Ti plus FHA with different roughness; they can be divided into four groups: low roughness (LR; Ra: 5.9 B5m), low roughness plus FHA coating (LR+FHA; Ra: 5.6 B5m), high roughness (HR; Ra: 22.5 B5m), high roughness plus FHA coating (HR+FHA; Ra: 21.2 B5m). MG63 were cultivated on 6 samples of each group and on polystyrene as control; after 72 hours the proliferation assay (WST-1) was done, alkaline phosphatase activity (ALP) was determined and the synthesis of osteocalcin (OC), type 1 collagen (CICP), transforming growth factor α 1 (TGF-A71), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-a) were measured. Samples of each material were randomly processed for analysis with a scanning electron microscope (SEM).

Results: Cells proliferated on biomaterials more slowly than in the control group (p < 0.0001), the proliferation rate was higher on FHA-coated LR than uncoated HR (p = 0.037). CICP production was positively affected by the LR surface (p = 0.001) as compared to controls, while it was significantly lower (p = 0.0001) in the HR surfaces. Compared to controls, LR and HR surfaces led to enhanced production of TGF-A71, further improved by FHA (FHA-coated LR: p = 0.007; FHA-coated HR p < 0.0001 respectively). ALP, OC, IL-6 levels were not significantly different from the controls

Conclusions: Results suggest that CICP production could be useful in predicting the in vivo osteointegration rate of biocompatible biomaterials observed in previous studies.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 58 - 58
1 Mar 2005
Giardino R Fini M Giavaresi G Aldini NN Martini L Torricelli P Guzzardella A Borsari V Tschon M
Full Access

When investigating orthopaedic biomaterials and tissue engineered devices, biological investigations by means of in vitro and in vivo tests are mandatory to obtain a overall picture of biocompatibility and therapeutic efficacy. However, various aspects requiring careful consideration should be kept in mind and can explain the complex situations encountered by researchers when the skeletal tissue is involved. This presentation aimed to summarize some useful information in improving in vivo methodology to test present and future therapies for orthopaedic surgery. Some in vivo biological tests to study innovative reconstructive surgical techniques are summarized on the basis of the experience of the Experimental Surgery Department –IOR.

After in vitro and in vivo biocompatibility tests, for the study of bone defect healing and of biomaterial osteo-inductive properties the subcutaneous and intramuscular implants are usually performed in laboratory animals while osteoconduction and bone healing evaluation require the development of “nonunions” (sites that never achieve functional bone continuity) and “critical size defects” (the smallest defect that will heal with less than 10% bony growth) models. Biomaterial osteointegration properties are investigated by means of metaphyseal, diaphyseal and intramedullary implantation. The use of pathological animals is also recommended to take into account the clinical situation where biomaterials are often implanted in aged and osteoporotic patients. As far as articular cartilage pathology is concerned, chondral and osteochondral “critical size defects” may be performed and the development of osteoarthritic animals could be also useful.

At different experimental times post-explantation evaluations by means of radiology, histology, histomorphometry and biomechanics provide a complete characterization of biomaterials and biotechnologies showing their potential therapeutic efficacy for skeletal reconstruction.

In vivo studies provide important pre-clinical information on new biomaterials and biotechnologies for the skeletal reconstruction Among the factors that are increasingly improving the reliability of in vivo testing are the continuous improvement in knowledge on bone biology and comparative science between humans and animals, the awareness that animal suffering should be reduced as much as possible, and, finally, the amount and the accuracy of in vivo post-explantation findings.