Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 28 - 28
1 Dec 2022
Bornes T Khoshbin A Backstein D Katz J Wolfstadt J
Full Access

Total hip arthroplasty (THA) is performed under general anesthesia (GA) or spinal anesthesia (SA). The first objective of this study was to determine which patient factors are associated with receiving SA versus GA. The second objective was to discern the effect of anesthesia type on short-term postoperative complications and readmission. The third objective was to elucidate factors that impact the effect of anesthesia type on outcome following arthroplasty.

This retrospective cohort study included 108,905 patients (median age, 66 years; IQR 60-73 years; 56.0% females) who underwent primary THA for treatment of primary osteoarthritis in the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) database during the period of 2013-2018. Multivariable logistic regression analysis was performed to evaluate variables associated with anesthesia type and outcomes following arthroplasty.

Anesthesia type administered during THA was significantly associated with race. Specifically, Black and Hispanic patients were less likely to receive SA compared to White patients (White: OR 1.00; Black: OR 0.73; 95% confidence interval [CI] 0.71-0.75; Hispanic: OR 0.81; CI, 0.75-0.88), while Asian patients were more likely to receive SA (OR 1.44, CI 1.31-1.59). Spinal anesthesia was associated with increased age (OR 1.01; CI 1.00-1.01). Patients with less frailty and lower comorbidity were more likely to receive SA based on the modified frailty index ([mFI-5]=0: OR 1.00; mFI-5=1: OR 0.90, CI 0.88-0.93; mFI-5=2 or greater: OR 0.86, CI 0.83-0.90) and American Society of Anesthesiologists (ASA) class (ASA=1: OR 1.00; ASA=2: OR 0.85, CI 0.79-0.91; ASA=3: OR 0.64, CI 0.59-0.69; ASA=4-5: OR 0.47; CI 0.41-0.53). With increased BMI, patients were less likely to be treated with SA (OR 0.99; CI 0.98-0.99).

Patients treated with SA had less post-operative complications than GA (OR 0.74; CI 0.67-0.81) and a lower risk of readmission than GA (OR 0.88; CI 0.82-0.95) following THA. Race, age, BMI, and ASA class were found to affect the impact of anesthesia type on post-operative complications. Stratified analysis demonstrated that the reduced risk of complications following arthroplasty noted in patients treated with SA compared to GA was more pronounced in Black, Asian, and Hispanic patients compared to White patients. Furthermore, the positive effect of SA compared to GA was stronger in patients who had reduced age, elevated BMI, and lower ASA class.

Among patients undergoing THA for management of primary osteoarthritis, factors including race, BMI, and frailty appear to have impacted the type of anesthesia received. Patients treated with SA had a significantly lower risk of readmission to hospital and adverse events within 30 days of surgery compared to those treated with GA. Furthermore, the positive effect on outcome afforded by SA was different between patients depending on race, age, BMI, and ASA class. These findings may help to guide selection of anesthesia type in subpopulations of patients undergoing primary THA.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 83 - 83
1 Dec 2022
Bornes T Kubik J Klinger C Altintas B Dziadosz D Ricci W
Full Access

Tibial plateau fracture reduction involves restoration of alignment and articular congruity. Restorations of sagittal alignment (tibial slope) of medial and lateral condyles of the tibial plateau are independent of each other in the fracture setting. Limited independent assessment of medial and lateral tibial plateau sagittal alignment has been performed to date. Our objective was to characterize medial and lateral tibial slopes using fluoroscopy and to correlate X-ray and CT findings.

Phase One: Eight cadaveric knees were mounted in extension. C-arm fluoroscopy was used to acquire an AP image and the C-arm was adjusted in the sagittal plane from 15° of cephalad tilt to 15 ° of caudad tilt with images captured at 0.5° increments. The “perfect AP” angle, defined as the angle that most accurately profiled the articular surface, was determined for medial and lateral condyles of each tibia by five surgeons. Given that it was agreed across surgeons that more than one angle provided an adequate profile of each compartment, a range of AP angles corresponding to adequate images was recorded. Phase Two: Perfect AP angles from Phase One were projected onto sagittal CT images in Horos software in the mid-medial compartment and mid-lateral compartment to determine the precise tangent subchondral anatomic structures seen on CT to serve as dominant bony landmarks in a protocol generated for calculating medial and lateral tibial slopes on CT. Phase Three: 46 additional cadaveric knees were imaged with CT. Tibial slopes were determined in all 54 specimens.

Phase One: Based on the perfect AP angle on X-ray, the mean medial slope was 4.2°+/-2.6° posterior and mean lateral slope was 5.0°+/-3.8° posterior in eight knees. A range of AP angles was noted to adequately profile each compartment in all specimens and was noted to be wider in the lateral (3.9°+/-3.8°) than medial compartment (1.8°+/-0.7° p=0.002). Phase Two: In plateaus with a concave shape, the perfect AP angle on X-ray corresponded with a line between the superiormost edges of the anterior and posterior lips of the plateau on CT. In plateaus with a flat or convex shape, the perfect AP angle aligned with a tangent to the subchondral surface extending from center to posterior plateau on CT. Phase Three: Based on the CT protocol created in Phase Two, mean medial slope (5.2°+/-2.3° posterior) was significantly less than lateral slope (7.5°+/-3.0° posterior) in 54 knees (p<0.001). In individual specimens, the difference between medial and lateral slopes was variable, ranging from 6.8° more laterally to 3.1° more medially. In a paired comparison of right and left knees from the same cadaver, no differences were noted between sides (medial p=0.43; lateral p=0.62).

On average there is slightly more tibial slope in the lateral plateau than medial plateau (2° greater). However, individual patients may have substantially more lateral slope (up to 6.8°) or even more medial slope (up to 3.1°). Since tibial slope was similar between contralateral limbs, evaluating slope on the uninjured side provides a template for sagittal plane reduction of tibial plateau fractures.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 37 - 37
1 Mar 2021
Bouchard C Chan R Bornes T Beaupre L Silveira A Hemstock R
Full Access

The purpose of this study is to determine the re-operation rate following plate fixation of the olecranon with contoured anatomic plates.

Plate fixation of the olecranon allows for management of different fracture patterns as well as osteotomies with anatomic reduction and stable fixation for early elbow mobilization. However, olecranon hardware prominence can be troublesome. Our hypothesis was with the newer generation of low profile contoured anatomic plates, the rate of hardware removal should be lower compared to previously described literature. Retrospective review for patients treated with operative fixation of the olecranon between 2010 and 2015 in the Edmonton zone was identified using population level administrative data. Radiographic screening of these patients was then carried out to identify those who received plate fixation. Fracture patterns were also characterized. Chart reviews followed to determine the indications for re-operation and other post-operative complications. Main outcome measures were re-operation rate and their indications, including hardware prominence.

During the screening process, 600 surgically treated olecranon patients were identified and 321 patients were found to have plate fixation of the olecranon. Chart review determined 90 patients had re-operations demonstrating a 28% re-operation rate. Re-operation due to hardware prominence was found to be 15.6%. Other indications included hardware failure (5.3%), infection (2.8%), or contracture (2.8%). Compared to patients that did not require re-operation, the re-operation group had a higher incidence of Type III olecranon fractures (17.4% vs 8.4%, p = 0.036) and Monteggia pattern injuries (13.5% vs 4.9%, p = 0.008).

Recent heteregenous data suggests the hardware removal rate related to implant prominence is between 17–54%. Compared to the literature, this study demonstrated a lower rate at 15.6% with contoured anatomic plating. Also, those with more complex fracture patterns were more likely to require re-operation.


Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. Quality of cartilaginous repair tissue following BMSC transplantation has been shown to correlate with functional outcome. Therefore, tissue-engineering variables, such as cell expansion environment and seeding density of scaffolds, are currently under investigation. The objectives of this study were to demonstrate chondrogenic differentiation of BMSCs seeded within a collagen I scaffold following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments, and assess the impact of seeding density on in vitro chondrogenesis. It was hypothesised that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seeding density of 10 million cells/cm3.

Ovine BMSCs were isolated in a 2D environment by plastic adherence, expanded to passage two in flasks containing expansion medium, and seeded within collagen I scaffolds (6 mm diameter, 3.5 mm thickness and 0.115 ± 0.020 mm pore size; Integra LifeSciences Corp.) at densities of 50, 10, 5, 1, and 0.5 million BMSCs/cm3. For 3D isolation and expansion, bone marrow aspirates containing known quantities of mononucleated cells (BMNCs) were seeded on scaffolds at 50, 10, 5, 1, and 0.5 million BMNCs/cm3 and cultured in expansion medium for an equivalent duration to 2D expansion. All cell-scaffold constructs were differentiated in vitro in chondrogenic medium containing transforming growth factor-beta three for 21 days and assessed with RT-qPCR, safranin O staining, histological scoring using the Bern Score, collagen immunofluorescence, and glycosaminoglycan (GAG) quantification.

Two dimensional-expanded BMSCs seeded at all densities were capable of proteoglycan production and displayed increased expressions of aggrecan and collagen II mRNA relative to pre-differentiation controls. Collagen II deposition was apparent in scaffolds seeded at 0.5–10 million BMSCs/cm3. Chondrogenesis of 2D-expanded BMSCs was most pronounced in scaffolds seeded at 5–10 million BMSCs/cm3 based on aggrecan and collagen II mRNA, safranin O staining, Bern Score, total GAG, and GAG/DNA. For 3D-expanded BMSC-seeded scaffolds, increased aggrecan and collagen II mRNA expressions relative to controls were noted with all densities. Proteoglycan deposition was present in scaffolds seeded at 0.5–50 million BMNCs/cm3, while collagen II deposition occurred in scaffolds seeded at 10–50 million BMNCs/cm3. The highest levels of aggrecan and collagen II mRNA, Bern Score, total GAG, and GAG/DNA occurred with seeding at 50 million BMNCs/cm3.

Within a collagen I scaffold, 2D- and 3D-expanded BMSCs are capable of hyaline-like chondrogenesis with optimal cell seeding densities of 5–10 million BMSCs/cm3 and 50 million BMNCs/cm3, respectively. Accordingly, these densities could be considered when seeding collagen I scaffolds in BMSC transplantation protocols.