Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 150 - 150
1 Sep 2012
Giles JW Elkinson I Boons HW Ferreira LM Litchfield R Johnson JA Athwal GS
Full Access

Purpose

The management of moderate to large engaging Hill-Sachs lesions is controversial and surgical options include remplissage, allograft reconstruction, and partial resurfacing arthroplasty. Few in-vitro studies have quantified their biomechanical characteristics and none have made direct comparisons. The purpose of this study was to compare joint stability and range of motion (ROM) among these procedures using an in-vitro shoulder simulator. It was hypothesized that all procedures would prevent defect engagement, but allograft and partial resurfacing would most accurately restore intact biomechanics; while remplissage would provide the greatest stabilization, possibly at the expense of motion.

Method

Eight cadaveric shoulders were tested on an active in-vitro shoulder simulator. Each specimen underwent testing in 11 conditions: intact, Bankart lesion, Bankart repair, and two unrepaired Hill-Sachs lesions (30% & 45%) which were then treated with each of the three techniques. Anterior joint stability, ROM in extension and internal-external rotation, and glenohumeral engagement were assessed. Stability was quantified as resistance, in N/mm, to an anteriorly applied load of 70N.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 155 - 155
1 Sep 2012
Elkinson I Giles JW Faber KJ Boons HW Ferreira LM Johnson JA Athwal GS
Full Access

Purpose

The remplissage procedure may be performed as an adjunct to Bankart repair to address an engaging Hill-Sachs defect. Clinically, it has been reported that the remplissage procedure improves joint stability but that it may also restrict shoulder range of motion. The purpose of this biomechanical study was to examine the effects of the remplissage procedure on shoulder motion and stability. We hypothesized that the remplissage procedure would improve stability and prevent engagement but may have a deleterious effect on motion.

Method

Eight cadaveric forequarters were mounted on a custom biomechanical testing apparatus which applied simulated loads independently to the rotator cuff muscles and to the anterior, middle and posterior deltoid. The testing conditions included: intact shoulder, Bankart defect, Bankart repair, 2 Hill-Sachs defects (15%, 30%) with and without remplissage. Joint range of motion and translation were recorded with an optical tracking system. Outcomes measured were internal-external rotation range of motion in adduction and 90 combined abduction, extension range of motion and stability, quantified in terms of joint stiffness and engagement, in abduction.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 18 - 18
1 Sep 2012
Elkinson I Giles JW Faber KJ Boons HW Ferreira LM Johnson JA Athwal GS
Full Access

Purpose

The remplissage technique of insetting the infraspinatus tendon and posterior joint capsule into an engaging Hill-Sachs lesion has gained in popularity. However, a standardized technique for suture anchor and suture placement has not been defined for this novel procedure. The purpose of this biomechanical study was to compare three remplissage techniques by evaluating their effects on joint stiffness and motion.

Method

Cadaveric forequarters (n=7) were mounted on a custom active biomechanical shoulder simulator. Three randomly ordered techniques were conducted: T1- anchors in the valley of the defect, T2- anchors in the rim of the humeral head; T3- anchors in the valley with medial suture placement. The testing conditions included: intact, Bankart, Bankart repair, and 15% & 30% HS lesions with repairs (T1, T2, T3). Outcome measures including internal-external range of motion and stability were recorded. Stability was quantified in terms of glenohumeral joint stiffness against an externally applied anterior force of 70N.