header advert
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 87 - 87
1 May 2016
Clarke I Burgett-Moreno M Bone M Scholes S Joyce T Donaldson T
Full Access

Metal-on-metal retrieval studies indicated that MOM wear-rates could rise as high as 60–70mm3/year in short-term failures (Morlock, 2008). In contrast, some MOM and ceramic-on-ceramic (COC) devices of 1970's era performed admirably over 2–3 decades (Schmalzreid, 1996; Shishido, 2003). While technology has aided analysis of short-term MOM and COC failures (Morlock 2008; Lord 2011), information on successful THA remains scant. Lack of long-term data creates difficulties in setting benchmarks for simulator studies and establishing guidelines for use in standards. In this study we compared clinical and wear histories for a 30-year MOM and a 32-year COC to establish such long-term, wear-rates.

The McKeeTM retrieval was cemented and made 100% of CoCr alloy (Fig. 1a). This patient had a right femoral fracture at 47 years of age, treated by internal-fixation, which failed. Her revision with a Judet implant also failed, leaving her right hip as a Girdlestone. At the age of 68, she had a McKee THA implanted in left hip, and used it until almost 98 years of age (Campbell, 2003). The COC case was a press-fit AutophorTM THA, head and cup made of alumina ceramic, with the only metal being the CoCr stem (Fig. 1c). This was implanted in a female patient 17-years of age active in sports (water-skiing). This modular THA was revised 32-years later due to hip pain from cup migration. Wear on these implants was identified by stereomicroscopy and stained red for photography (Fig. 1). Cup-to-neck impingement was denoted by circumferential neck notching, roughness was assessed by interferometry, and wear determined by CMM (Lord, 2011).

McKee head wear covered 1092mm2 area (Figs. 1a, 2: hemi-area ratio 58%). There was no stripe wear and head roughness was 36nm (Ra). Cup wear covered an area of 1790mm2 (hemi-area 63%). Circumferential damage was noted on the supero-posterior femoral neck with scuff marks also on posterior collar (Fig. 2c). Head and cup wear amounted to 37.7 and 25.2mm3, respectively. Total MOM wear was 62.9mm3, indicating a wear-rate of 2.1mm3/year.

Ceramic head wear consisted of two circular patterns (Fig. 1c), the major one of area 1790mm2 (hemi-area 79%). No wear stripes were identified. Non-worn and extensively worn surfaces had roughness (Ra) 17nm and 123nm, respectively. The cup showed 360o circumferential arc of rim wear with a small, non-wear zone inferiorly (Fig. 1c). Gray metallic transfer was evident, EDS revealing Co and Cr (Fig. 3a). Head and cup wear volumes were 77.2 and 54mm3, respectively. Total COC wear amounted to 131.2mm3 indicating a wear-rate of 4.1mm3/year.

These two THA functioned successfully over 3 decades. The McKee retrieval had minor signs of impingement but no adverse “stripe wear”. This MOM performed satisfactorily due to good positioning and patient's advanced age (68 to 98Yrs of age). The COC patient was 17 years of age at index surgery and active. The ceramic cup showed 360o of edge wear, CoCr transfer and a COC wear-rate double that of the MOM retrieval. Thus the high ceramic wear-resistance protected this youthful patient.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 115 - 115
1 May 2016
Dold P Pandorf T Flohr M Preuss R Bone M Holland J Deehan D
Full Access

INTRODUCTION

Deformation of modular acetabular press-fit shells is of much interest for surgeons and manufacturers. Initial fixation is achieved through press-fit between shell and acetabulum with the shell mechanically deforming upon insertion. Shell deformation may disrupt the assembly process of modular systems and may adversely affect integrity and durability of the components and tribology of the bearing. The aim of the study was to show shell deformation as a function of bone and shell stiffness.

METHODS

The stiffness of the generic shells was determined using a uniaxial/ two point loading frame by applying different loads, and the change in dimension was measured by a coordinate measurement machine (CMM). Cadaver lab deformation measurements were done before and after insertion for 32 shells with 2 wall thicknesses and 11 shell sizes using the ATOS Triple Scan III (ATOS) optical system previously validated as a suitable measurement system to perform those measurements. Multiple deformation measurements per cadaver were performed by using both hip sides and stepwise increasing the reamed acetabulum by at least 1 mm, depending on sufficient residual bone stock. The under-reaming was varied between 0mm and 1mm, respectively. From the deformations, the resulting forces on the shells and bone stiffness were calculated assuming force equilibrium as well as linear-elastic material behaviour in each point at the rim of the shell.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 114 - 114
1 Jan 2016
Dold P Bone M Flohr M Preuss R Joyce TJ Deehan D Holland J
Full Access

INTRODUCTION

Deformation of modular acetabular press-fit shells is a topic of much interest for surgeons and manufacturer. Such modular components utilise a titanium shell with a liner manufactured from metal, polyethylene or ceramic. Initial fixation is achieved through a press-fit between shell and acetabulum with the shell mechanically deforming upon insertion. Shell deformation may disrupt the assembly process of inserting the bearing liner into the acetabular shell for modular systems. This may adversely affect the integrity and durability of the components and the tribology of the bearing.

OBJECTIVE

Most clinically relevant data to quantify and understand such shell deformation can be achieved by cadaver measurements. ATOS Triple Scan III was identified as a measurement system with the potential to perform those measurements. The study aim was to validate an ATOS Triple Scan III optical measurement system against a co-ordinate measuring machine (CMM) using in-vitro testing and to check capability/ repeatability under cadaver lab conditions.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 75 - 75
1 Mar 2013
Bone M Langton D Lord J Patil S Partington P Joyce T
Full Access

Introduction

There is much current debate concerning wear and corrosion at the taper junctions of large head total hip replacements, particularly metal-on-metal hips. Is such damage a modern concern or has it always occurred in total hip replacement but not previously noted. To investigate this five explanted V40 Exeter femoral stems (Stryker Howmedica) were obtained following revision surgery at a single centre. In all cases, the 24–26 mm femoral heads were still attached.

Hypothesis

In conventional ‘small head’ modular hip prostheses such as the Exeter, negligible wear and corrosion is seen at the taper junction of explanted devices.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 15 - 15
1 Mar 2013
Petheram T Bone M Joyce T Partington P
Full Access

Recent NICE guidance recommends use of a well proven cemented femoral stem for hip hemiarthroplasty in management of fractured neck of femur. The Exeter Trauma Stem (ETS) has been designed based on the well proven Exeter hip stem. It has a double taper polished stem design, proclaimed to share geometry and surface finish with the Exeter hip. This study investigated the surface finish of the two stems in order to investigate the hypothesis that they were different. Two ETS and two Exeter stems were examined using a profilometer with a sensitivity of one nanometer. Macroscopic visual inspection showed that the two Exeter stems had significantly smoother surface finish than the ETS stems. The roughness average (RA) values on the ETS stems were approximately an order of magnitude higher than those of the Exeter stems, mean of 0.235μm compared with 0.025μm (p<0.0001). This difference in surface finish has implications for the biomechanical functioning of the stem. Previous change of the Exeter stem to a matt surface-finish in 1976 resulted in a significant increase in stem failure rates and an understanding of the importance of the polished surface-finish in order to function within a taper-slip philosophy. By changing the surface finish in the ETS stem, longevity of the implant may similarly be affected. Clinical results have yet to be published demonstrating this. We recommend the manufacturer reconsiders the surface finish of the ETS stem to ensure it functions as well as the Exeter primary stem with which it shares a design philosophy.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 52 - 52
1 Mar 2013
Bone M Giddins G Joyce T
Full Access

Introduction

Ten explanted pyrolytic carbon components of a number of finger prostheses were obtained at revision surgery for wear analysis. Implants were removed for either dislocation or failure of fixation. Hypothesis Failure of the components was due to wear from the articulating surfaces, as occurs in many hip and knee prostheses.

Methods

The articulating surfaces were examined using a ZYGO NewView 5000 non-contact profilometer with a resolution of 1nm, to determine the roughness average (RA) of the surface. A total of 86 RA measurements were taken. Detailed images of the surface displayed as a 3D map of were acquired. The RA values for each component were averaged and compared against the British standard for orthopaedic implants, which states that the articulating surfaces of devices made of metal or ceramic should have RA values lower than 0.050 µm.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 173 - 176
1 Feb 2013
Petheram TG Bone M Joyce TJ Serrano-Pedraza I Reed MR Partington PF

Recent guidance recommends the use of a well-proven cemented femoral stem for hemiarthroplasty in the management of fractures of the femoral neck, and the Exeter Trauma Stem (ETS) has been suggested as an example of such an implant. The design of this stem was based on the well-proven Exeter Total Hip Replacement stem (ETHRS). This study assessed the surface finish of the ETS in comparison with the ETHRS. Two ETSs and two ETHRSs were examined using a profilometer with a precision of 1 nm and compared with an explanted Exeter Matt stem. The mean roughness average (RA) of the ETSs was approximately ten times higher than that of the ETHRSs (0.235 μm (0.095 to 0.452) versus 0.025 μm (0.011 to 0.059); p < 0.001). The historical Exeter Matt stem roughness measured a mean RA of 0.973 μm (0.658 to 1.159). The change of the polished Exeter stem to a matt surface finish in 1976 resulted in a high stem failure rate. We do not yet know whether the surface differences between ETS and ETHRS will be clinically significant. We propose the inclusion of hemiarthroplasty stems in national joint registries.

Cite this article: Bone Joint J 2013;95-B:173–6.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 17 - 17
1 Sep 2012
Bone M Lord J Patil S Partington P Joyce T
Full Access

Background

Hemiarthroplasty of the hip involves the replacement of the femoral side of the joint with a metal prosthesis, resulting in metal-on-cartilage articulation. The two most common types of hemiarthroplasty used are the Austin Moore and the Thomson, both of which are available in either Titanium (Ti) or cobalt chromium (CoCr). Hemiarthroplasty may be more cost effective in elderly patients who have lower life expectancy and are less active.

Materials and Methods

Three Ti and two CoCr hemiarthroplasty components were obtained following revision surgery. Four had an articulating diameter of 44mm and the other was 46mm diameter. These five hemiarthroplasties were analysed using a Mitutoyo LEGEX322 co-ordinate measuring machine (CMM) (manufacturer's claimed scanning accuracy of 0.8μm). In each case a wear map was generated and the wear volume from the articulating surface was calculated using a bespoke MATLAB program.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 59 - 59
1 Aug 2012
Bone M Cunningham J Field J Joyce T
Full Access

Finger arthroplasty lacks the success seen with hip and knee joint replacements. The Van Straten Leuwen Poeschmann Metal (LPM) prosthesis was intended for the proximal interphalangeal (PIP) joints. However revision rates of 30% after 19 months were reported alongside massive osteolysis. Three failed LPM titanium niobium (TiNb) coated cobalt chrome (CoCr) components were obtained- two distal and one proximal.

All three components were analysed using an environmental scanning electron microscope (ESEM). This gave the chemical composition of the surface to determine if the TiNb surface coating was still intact. The distal components were analysed using a ZYGO non-contact profilometer (1nm resolution) with the proximal component unable to be analysed due to its shape. ZYGO analysis gave the roughness average (Ra) of the surface and determined the presence of scratches, pitting and other damage.

Images obtained from both the ZYGO and the ESEM indicated that the surfaces of all components were heavily worn. On the articulating surfaces of both distal components unidirectional scratching was dominant, while the non-articulating surface showed multidirectional scratching. The presence of unidirectional scratching suggested two-body wear, whilst the multidirectional scratching on the non-articulating surface of the distal component suggested that trapped debris may have caused three-body wear.

The ESEM chemical analysis showed that in some regions on the distal component the TiNb coating had been removed completely and in other areas it had been scratched or penetrated. On the proximal component the TiNb coating had been almost completely removed from the articulating surfaces and was only present in small amounts on the non-articulating surfaces. There was little evidence of bone attachment to the titanium coating which was intended to help provide fixation.

ESEM images showed the coating had been removed in some sections where there was minimal scratching, suggesting this scratching did not impact significantly in the coating removal. Therefore here the main cause of coating removal may have been corrosion, although scratching may have also have played a part.

The osteolysis reported clinically may have been linked to the wear debris from the failed coating.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 351 - 351
1 Jul 2008
Bashir I Bone M Haynes J Armstrong A
Full Access

The study investigated if suprascapular nerve(SSN) rhizolysis could give effective and longlasting pain relief to patients with chronic shoulder pain(massive cuff tears and /or osteoarthritis) some with significant comorbidity, who did not wish for or were unable to withstand surgery. Sixty two patients(12 male, 50 female, mean age 74years) with longstanding moderate to severe shoulder joint pain(massive rotator cuff tears, osteoarthritis, rheumatoid arthritis), who had failed conventional non-operative management and who were unsuitable for further shoulder surgery, were assessed for radiofrequency(RF) rhizolysis to the SSN. Most patients reported significant anaesthetic co-morbidity. All patients had received full orthopaedic or rheumatological assessment with investigations including Xray, ultrasound and MRI scan. Ninety-five percent of patients had undergone a SSN block which had afforded > 50% pain reduction for three to six months. The suprascapular notch was identified with Xray control. The SSN was located with 100 Hz and 2 Hz stimulation of an insulated 50mm needle. Once localised, 5 mls of 2% lignocaine was injected and a radiofrequency thermocoagulation lesion undertaken at 700C for 90 seconds. Eighty-five percent of patients reported> 50% pain relief still present at six months (as reported by VAS score). No serious adverse side effects were reported (pneumothoraces, haematomas, infection, neurological deficits). RF rhizolysis of the SSN may be a useful treatment for the group of patients with chronic shoulder pain for whom surgery is not an option.