To develop a new system for antibacterial coating of joint prosthesis and osteosynthesis material. The new coating system was designed to release gentamicin immediately after insertion to eradicate surgical contamination. Steel implants (2×15mm) were coated with a solid nanocomposite xerogel made from silica and the dendritic polymer, hyperbranched polyethyleneimine. The xerogel was anchored inside a porous surface made by pre-coating with titanium microspheres. Finally, gentamicin was encapsulated in the xerogel, i.e. no chemical binding. A total of 50 µg gentamicin was captured into each implant. The efficacy of the new coating was evaluated in a porcine model of implant associated osteomyelitis. In total, 30 female pigs were randomized into 3 study groups (n=10). Group A; plain implants + saline, Group B; plain implants + 104 CFU of Aim
Method
The liver is the major source of acute phase proteins (APPs) and serum concentrations of several APPs are widely used as markers of inflammation and infection. The aim of the present study was to explore if a local extra hepatic osseous acute phase response occurs during osteomyelitis. The systemic (liver tissue and serum) and local (bone tissue) expression of several APPs during osteomyelitis was investigated with qPCR and ELISA in a porcine model of implant associated osteomyelitis (IAO) at 5, 10 and 15 days after inoculation with S. aureus or saline, respectively. Additionally, samples were also collected from normal heathy pigs and pigs with spontaneous, chronic, haematogenous osteomyelitis. Afterwards, immunohistochemistry towards different upregulated APPs was performed on the porcine osteomyelitis lesions and on bone biopsies from human patients with chronic osteomyelitis.Aim
Method
To conduct a systematic review of non-rodent animal models (rabbit, pig, dog, goat and sheep) of bone infection. In the future, anti-infective technologies aiming to fight bone infections are depending on evaluation in reliable animal models. Therefore, it is highly relevant to evaluate the scientific quality of existing bone infection models. PubMed and Web of Science were searched systematically. To be included in the systematic review, publications had to deal with bacterial inoculation of non-rodent animals in order to model bone infections in humans. Data was extracted on study design Aim
Method
To study the antimicrobial effect of a gentamicin loaded bio-composite bone void filler in relation to a limited or extensive debridement of osteomyelitis lesions, respectively. Nine pigs were inoculated into the right proximal tibial bone with a high virulent gentamicin sensitive strain of Aim
Methods