Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 501 - 505
1 Apr 2020
Gnanasekaran R Beresford-Cleary N Aboelmagd T Aboelmagd K Rolton D Hughes R Seel E Blagg S

Aims

Early cases of cauda equina syndrome (CES) often present with nonspecific symptoms and signs, and it is recommended that patients undergo emergency MRI regardless of the time since presentation. This creates substantial pressure on resources, with many scans performed to rule out cauda equina rather than confirm it. We propose that compression of the cauda equina should be apparent with a limited sequence (LS) scan that takes significantly less time to perform.

Methods

In all, 188 patients with suspected CES underwent a LS lumbosacral MRI between the beginning of September 2017 and the end of July 2018. These images were read by a consultant musculoskeletal radiologist. All images took place on a 3T or 1.5T MRI scanner at Stoke Mandeville Hospital, Aylesbury, UK, and Royal Berkshire Hospital, Reading, UK.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 294 - 294
1 Sep 2005
Robertson P Blagg S
Full Access

Introduction and Aims: C1 lateral mass screw fixation offers a powerful alternative biomechanical fixaion for upper cervical disorders. The anatomical constraints to this fixation have not been described yet and are essential to ensure avoidance of neurovascular damage.

Method: Fifty patients (including five patients with rheumatoid arthritis) underwent upper cervical CT scans. Analysis of these CT scans involved use of calibrated scan measurements to identify the midpoint of the posterior lateral mass, the dimensions of the lateral mass, the direction of optimum screw passage, the position of the vertebral foramen at C1 and the ideal entry point for lateral mass screw fixation.

Results: The average length of screw within the lateral mass was 20mm with 13.5mm of screw not in bone, behind the lateral mass, but necessary to allow rod placement posteriorly adjacent to other fixation points. The safest entry point was directly beneath the medial edge of the lamina origin. The ideal direction of screw angulation is parallel with the posterior arch, in the saggital plane. This entry point was on average 8.8mm from the vertebral artery foramen laterally and 5.8mm from the medial aspect of the lateral mass. Vertical space available for sublaminar screw placement was 3mm or less in 9% of lateral masses.

Conclusion: C1 lateral mass screws are best placed beneath the lamina origin, parallel with the arch in the saggital plane using an entrypoint in line with the medial edge of the lamina origin. An entry point under the midpoint of the lamina origin, or passing through the lamina at its attachment to the lateral mass, is likely to damage the vertebral artery in a significant proportion of cases.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 458 - 458
1 Apr 2004
Robertson P Blagg S
Full Access

Introduction: C1 lateral mass screw fixation offers a powerful alternative biomechanical fixation for upper cervical disorders. The anatomical constraints to this fixation have not been described yet and are essential to ensure avoidance of neurovascular damage.

Methods: 50 patients (including 5 patients with rheumatoid arthritis) underwent upper cervical CT scans. Analysis of these CT scans involved use of calibrated scan measurements to identify the midpoint of the posterior lateral mass, the dimensions of the lateral mass, the direction of optimum screw passage, the position of the vertebral foramen at C1 and the ideal entry point for lateral mass screw fixation.

Results: The average length of screw within the lateral mass was 20 mm with 13.5mm of screw not in bone, behind the lateral mass, but necessary to allow rod placement posteriorly adjacent to other fixation points. The safest entry point was directly beneath the medial edge of the lamina origin. The ideal direction of screw angulation is parallel with the posterior arch, in the saggital plane. This entrypoint was on average 8.8 mm from the vertebral artery foramen laterally and 5.8 mm from the medial aspect of the lateral mass. Vertical space available for sublaminar screw placement was 3mm or less in 9% of lateral masses.

Discussion: C1 lateral mass screws are best placed beneath the lamina origin, parallel with the arch in the saggital plane using an entrypoint in line with the medial edge of the lamina origin. An entry point under the midpoint of the lamina origin, or passing through the lamina at its attachment to the lateral mass, is likely to damage the vertebral artery in a significant proportion of cases.