We aimed to investigate the clinical consequences of intraoperative acetabular fractures. Between 2003 and 2012, a total of 3391 cementless total hip arthroplasties (THA) were performed at the Dept. of Orthopaedics, Innsbruck Medical University. Of those, a total of 160 patients underwent a CT scan within 30 days postoperatively. The scans of 44 patients were not suitable for analyse due to thick scan layers. Of the remaining 116 patients, 76 had a fracture. Reasons for CT-scans were suspected bleeding, hip pain, abdominal symptoms, etc. The fractures included 59 isolated acetabular fractures, the rest of fractures was in the superior or inferior pubic ramus or the tuber ischiadicum. Four cases out of the 59 acetabular fractures underwent revision surgery due to periprosthetic joint infection after 0, 2, 10 and 23 months. Four patients underwent revision due to cup loosening after 13 and 14 days as well as after 16 and 24 months. Of those, three showed a central acetabular fracture with protrusion. In 33 of the remaining 51 patients, a minimum of 3 x-rays was available for migration analysis with EBRA. In 6 patients, the x-rays were not comparable to each other. The 27 remaining acetabular fractures were categorised according to AO classification in 62A1 (1; posterior wall), 62A2 (16; posterior column), 62A3 (6; anterior wall), and others (4). Four hips showed initial migration of more than 3 mm in the first 6 months. One had a central fracture, and was lost for follow-up after 8 months. Two had an anterior column fracture and showed no further migration after 6 months. One showed also a radiolucency of more than 2 mm in all 3 zones and was lost for follow-up. We conclude that intraoperative acetabular fractures occur more often than we expected. Fractures of the acetabular ring involving one column do not seem to compromise the long-term stability of the implant. Central fractures required revision or showed loosening proved by high cup migration.
Malposition of the acetabular component is a risk factor for post-operative dislocation after total hip replacement (THR). We have investigated the influence of the orientation of the acetabular component on the probability of dislocation. Radiological anteversion and abduction of the component of 127 hips which dislocated post-operatively were measured by Einzel-Bild-Röentgen-Analysis and compared with those in a control group of 342 patients. In the control group, the mean value of anteversion was 15° and of abduction 44°. Patients with anterior dislocation after primary THR showed significant differences in the mean angle of anteversion (17°), and abduction (48°) as did patients with posterior dislocation (anteversion 11°, abduction 42°). After revision patients with posterior dislocation showed significant differences in anteversion (12°) and abduction (40°). Our results demonstrate the importance of accurate positioning of the acetabular component in order to reduce the frequency of subsequent dislocations. Radiological anteversion of 15° and abduction of 45° are the lowest at-risk values for dislocation.
Several methods of measuring the migration of the femoral component after total hip replacement have been described, but they use different reference lines, and have differing accuracies, some unproven. Statistical comparison of different studies is rarely possible. We report a study of the EBRA-FCA method (femoral component analysis using Einzel-Bild-Röntgen-Analyse) to determine its accuracy using three independent assessments, including a direct comparison with the results of roentgen stereophotogrammetric analysis (RSA). The accuracy of EBRA-FCA was better than ±1.5 mm (95% percentile) with a Cronbach’s coefficient alpha for interobserver reliability of 0.84; a very good result. The method had a specificity of 100% and a sensitivity of 78% compared with RSA for the detection of migration of over 1 mm. This is accurate enough to assess the stability of a prosthesis within a relatively limited period. The best reference line for downward migration is between the greater trochanter and the shoulder of the stem, as confirmed by two experimental analyses and a computer-assisted design.
We report the ten-year results for three designs of stem in 240 total hip replacements, for which subsidence had been measured on plain radiographs at regular intervals. Accurate migration patterns could be determined by the method of Einzel-Bild-Roentgen-Analyse-femoral component analysis (EBRA-FCA) for 158 hips (66%). Of these, 108 stems (68%) remained stable throughout, and five (3%) started to migrate after a median of 54 months. Initial migration of at least 1 mm was seen in 45 stems (29%) during the first two years, but these then became stable. We revised 17 stems for aseptic loosening, and 12 for other reasons. Revision for aseptic loosening could be predicted by EBRA-FCA with a sensitivity of 69%, a specificity of 80%, and an accuracy of 79% by the use of a threshold of subsidence of 1.5 mm during the first two years. Similar observations over a five-year period allowed the long-term outcome to be predicted with an accuracy of 91%. We discuss the importance of four different patterns of subsidence and confirm that the early measurement of migration by a reasonably accurate method can help to predict long-term outcome. Such methods should be used to evaluate new and modified designs of prosthesis.
We carried out 71 primary total hip arthroplasties using porous-coated, hemispherical press-fit Duraloc ‘100 Series’ cups in 68 consecutive patients; 61 were combined with the cementless Spotorno stem and ten with the cemented Lubinus SP II stem. Under-reaming of 2 mm achieved a press-fit. Of the 71 hips, 69 (97.1%) were followed up after a mean of 2.4 years. Migration analysis was performed by the Ein Bild Röntgen Analyse method, with an accuracy of 1 mm. The mean total migration after 24 months was 1.13 mm. Using the definition of loosening as a total migration of 1 mm, it follows that 30 out of 63 cups (48%) were loose at 24 months.