header advert
Results 1 - 6 of 6
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 35 - 35
1 Dec 2022
Torkan L Bartlett K Nguyen K Bryant T Bicknell R Ploeg H
Full Access

Reverse shoulder arthroplasty (RSA) is commonly used to treat patients with rotator cuff tear arthropathy. Loosening of the glenoid component remains one of the principal modes of failure and is the main complication leading to revision. For optimal RSA implant osseointegration to occur, the micromotion between the baseplate and the bone must not exceed a threshold of 150 µm. Excess micromotion contributes to glenoid loosening. This study assessed the effects of various factors on glenoid baseplate micromotion for primary fixation of RSA.

A half-fractional factorial experiment design (2k-1) was used to assess four factors: central element type (central peg or screw), central element cortical engagement according to length (13.5 or 23.5 mm), anterior-posterior (A-P) peripheral screw type (nonlocking or locking), and bone surrogate density (10 or 25 pounds per cubic foot [pcf]). This created eight unique conditions, each repeated five times for 40 total runs. Glenoid baseplates were implanted into high- or low-density Sawbones™ rigid polyurethane (PU) foam blocks and cyclically loaded at 60 degrees for 1000 cycles (500 N compressive force range) using a custom designed loading apparatus. Micromotion at the four peripheral screw positions was recorded using linear variable displacement transducers (LVDTs). Maximum micromotion was quantified as the displacement range at the implant-PU interface, averaged over the last 10 cycles of loading.

Baseplates with short central elements that lacked cortical bone engagement generated 373% greater maximum micromotion at all peripheral screw positions compared to those with long central elements (p < 0.001). Central peg fixation generated 360% greater maximum micromotion than central screw fixation (p < 0.001). No significant effects were observed when varying A-P peripheral screw type or bone surrogate density. There were significant interactions between central element length and type (p < 0.001).

An interaction existed between central element type and level of cortical engagement. A central screw and a long central element that engaged cortical bone reduced RSA baseplate micromotion. These findings serve to inform surgical decision-making regarding baseplate fixation elements to minimize the risk of glenoid loosening and thus, the need for revision surgery.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 15 - 15
1 Aug 2020
Ehrlich J Bryant T Rainbow M Bicknell R
Full Access

The purpose of this study is to quantify the distribution of bone density in the scapulae of patients undergoing reverse shoulder arthroplasty (RSA) to guide optimal screw placement. To achieve this aim, we compared bone density in regions around the glenoid that are targeted for screw placement, as well as bone density variations medial to lateral within the glenoid.

Specimen included twelve scapula in 12 patients with a mean age of 74 years (standard deviation = 9.2 years). Each scapula underwent a computed tomography (CT) scan with a Lightspeed+ XCR 16-Slice CT scanner (General Electric, Milwaukee, USA). Three-dimensional (three-D) surface mesh models and masks of the scapulae containing three-D voxel locations along with the relative Hounsfield Units (HU) were created. Regions of interest (ROI) were selected based on their potential glenoid baseplate screw positioning in RSA surgery. These included the base of coracoid inferior and lateral to the suprascapular notch, an anterior and posterior portion of the scapular spine, and an anterosuperior and inferior portion of the lateral border. Five additional regions resembling a clock face, on the glenoid articular surface were then selected to analyze medial to lateral variations in bone density including twelve, three, six, and nine-o'clock positions as well as a central region. Analysis of Variance (ANOVA) tests were used to examine statistical differences in bone density between each region of interest (p < 0 .05).

For the regional evaluation, the coracoid lateral to the suprascapular notch was significantly less dense than the inferior portion of the lateral border (mean difference = 85.6 HU, p=0.03), anterosuperior portion of the lateral border (mean difference = 82.7 HU, p=0.04), posterior spine (mean difference = 97.6 HU, p=0.007), and anterior spine (mean difference = 99.3 HU, p=0.006).

For the medial to lateral evaluation, preliminary findings indicate a “U” pattern with the densest regions of bone in the glenoid most medially and most laterally with a region of less dense bone in-between.

The results from this study utilizing clinical patient CT scans, showed similar results to those found in our previous cadaveric study where the coracoid region was significantly less dense than regions around the lateral scapular border and scapular spine. We also have found for medial to lateral bone density, a “U” distribution with the densest regions of bone most medially and most laterally in the glenoid, with a region of less dense bone between most medial and most lateral. Clinical applications for our results include a carefully planned trajectory when placing screws in the scapula, potentially avoiding the base of coracoid. Additionally, surgeons may choose variable screw lengths depending on the region of bone and its variation of density medial to lateral, and that screws that pass beyond the most lateral (subchondral) bone, will only achieve further purchase if they enter the denser bone more medially. We suspect that if surgeons strategically aim screw placement for the regions of higher bone density, they may be able to decrease micromotion in baseplate fixation and increase the longevity of RSA.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 76 - 76
1 Aug 2020
Habis A Bicknell R Mei X
Full Access

Reverse shoulder arthroplasty (RSA) has an increasing effective use in the treatment of patients with a variety of diagnoses, including rotator cuff deficiency, inflammatory arthritis, or failed shoulder prostheses. Glenoid bone loss is not uncommonly encountered in these cases due to the significant wear. Severe bone loss can compromise glenoid baseplate positioning and fixation, consequently increasing the risk for early component loosening, instability, and scapular notching. To manage severe glenoid bone deficiencies, bone grafts are commonly used. Although, many studies report outcome of bone grafting in revision RSA, the literature on humeral head autograft for glenoid bone loss in primary RSA is less robust. The purpose of this study is to evaluate the clinical and radiographic outcomes of primary RSA with humeral head autograft for glenoid bone loss at our institution.

Institutional review board approval was obtained to retrospectively review the records of 22 consecutive primary RTSA surgeries in 21 patients with humeral head autograft for glenoid bone loss between January 2008 and December 2016. Five patients died during follow-up, three were unable to be contacted and one refused to participate, leaving a final study cohort of 12 patients with 13 shoulders that underwent RSA. All patients had a clinical evaluation including detailed ROM and clinical evaluation using the American Shoulder and Elbow Surgeons (ASES) Score, Constant Score, Western Ontario Osteoarthritis of the Shoulder Index (WOOS), and Short Form-12 (SF-12) questionnaires. Preoperative and postoperative plain radiographs and CT scans were assessed for component position, loosening, scapular notching, as well as graft incorporation, resorption, or collapse.

There were 6 males and 6 females, with an average age of 74 ± 6.8 years. The average BMI was 31.7 ± 5.3, and the median ASA score was 3. Average follow-up was 3.4 ± 1.1 years. The average postoperative range of motion measurements for the operative arm are: flexion = 120 ± 37, abduction = 106 ± 23, external rotation = 14 ± 12, internal rotation at 90 degrees of abduction = 49 ± 7, external rotation at 90 degrees of abduction = 50 ± 28. Average functional scores are: ASES: 76.9 ± 19.2, WOOS: 456 ± 347, SF12 physical: 34.2 ± 8.2, SF12 mental: 54.1 ± 10.2, Constant Score: 64.6 ± 14. No evidence of hardware loosening or evidence of bone graft resorption were encountered. On CT, the average of pre operative B-angle was 79.3 ± 9.3 while the pre operative reverse shoulder angle was 101.4 ± 28. Glenoid retroversion average on CT was 13.3 ± 16.6. Post operative baseplate inclination average was 82 ± 7.4 while the baseplate version 7.8 ±10. The operative technique was able to achieve up to 30 degrees of inclination correction and up to 50 degrees of version correction.

In conclusion, primary reverse shoulder arthroplasty with humeral head autograft for glenoid bone loss provides excellent ROM and functional outcomes at mid-term follow-up. This technique has a high rate of bone incorporation and small risk of bone resorption at mid term follow up.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 11 - 11
1 Dec 2016
Daalder M Venne G Rainbow M Bryant T Bicknell R
Full Access

While reverse shoulder arthroplasty (RSA) is a reliable treatment option for patients with rotator cuff deficiency, loss of glenoid baseplate fixation often occurs due to screw loosening. We questioned whether an analysis of the trabecular bone density distribution in the scapula would indicate more optimal sites for screw placement. As such, the purpose of this study was to determine the anatomic distribution of trabecular bone density in regions of the scapula available for screw placement in RSA.

Seven cadaveric shoulders were computed tomography (CT) scanned, and then voxels of the scapulae were isolated from the CT volume (Mimics 15.0 Materialise, Leuven, Belgium). Analyses were conducted in a common, 3D coordinate system. Volumetric regions of interest (ROI) within the scapula were identified based on potential baseplate screw sites. ROIs included areas at the base of the coracoid process lateral and inferior to the suprascapular notch, in the posterior and anterior lateral spine and in the anterosuperior and posteroinferior lateral border. Hounsfield Units (HU) were extracted from voxels corresponding to trabecular bone within each ROI. Overall bone density was summarised as the frequency of HU values above 80% of the ROI's maximum density value. Paired, two-tailed t-tests assuming unequal variance were used for pairwise comparisons (P≤0.05). Intra-region analyses compared two ROIs within the same broad anatomical structure; inter-region analyses compared ROIs between anatomical structures.

Areas of the spine and lateral border of the scapula appeared to be denser than the coracoid process. Intra-region comparisons indicated no significant differences within ROI: coracoid P=0.43, spine P=0.95, lateral border P=0.41. ROI inferior to the suprascapular notch were on average 3.78% (P=0.08) and 6% (P=0.04) less dense than the anterosuperior and posteroinferior lateral border and 7.59% (P=0.006) and 7.72% (P=0.01) less dense than the anterior and posterior lateral spine. ROI lateral to the suprascapular notch were 6% (P=0.05) and 8.21% (P=0.02) less dense than the anterosuperior and posteroinferior lateral border and 9.8% (P=0.006) and 9.94% (P=0.008) less dense than the anterior and posterior lateral spine. There was no significant difference between the anterior spine and anterosuperior and posteroinferior lateral border (P=0.12, P=0.58), nor between the posterior spine and anterosuperior and posteroinferior lateral border (P=0.14, P=0.57).

Results from this study indicate that the spine and lateral border of the scapula contain denser trabecular bone relative to regions in the coracoid. The higher quality bone of the spine and lateral border should be favoured over the coracoid process when fixing the glenoid baseplate in RSA. Further research may support the redesign of the glenoid baseplate geometry to better integrate the anatomy of the scapula and improve implant survival.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 81 - 81
1 Nov 2016
Tucker A Bicknell R Hiscox C
Full Access

Estimated to affect 2–5% of the population, adhesive capsulitis is a common cause of shoulder pain and dysfunction. The objective of this study is to determine if arthrographic injection of the shoulder joint with steroid, local anesthetic and contrast is an effective treatment modality for adhesive capsulitis and whether it is superior to arthrographic injection with local anesthetic and contrast alone.

This is a double-blinded RCT of patients with a diagnosis of adhesive capsulitis who were randomly assigned to receive an image guided arthrographic glenohumeral injection with either triamcinalone (steroid), lidocaine (local anesthetic) and contrast or lidocaine and contrast alone. Outcome measures included active and passive shoulder range of motion (ROM) and functional outcomes assessed using the Shoulder Pain and Disability Index (SPADI), the Constant Score and a Visual Analog Scale for pain. Post-operative evaluation occurred at 3 weeks, 6 weeks and 12 weeks. Descriptive statistics were utilised to summarise patient demographics and other study parameters. One-way ANOVAs compared the VAS, Constant and SPADI scores across the different time points for both study groups. The post hoc Bonferroni correction was used to adjust for multiple comparisons.

There were 37 shoulders injected with follow-up visits at 12 weeks. Twenty shoulders were randomised to receive local plus steroid and 17 shoulders received local anesthetic only. There were 21 females and 14 males with an average age of 54 years (range, 42–70). VAS scores for both patient groups were significantly improved (p<0.05) at all follow-up times. Goniometric testing demonstrated significant improvements in forward flexion and internal rotation at 90 degrees in the local group and only abduction in the local plus steroid group. There were no significant changes in the Constant scores for the local group (p=0.08), however, the Constant scores showed significant improvement for the local plus steroid group (p=0.003) at all follow-up time points. The local group showed significant improvement in their SPADI pain scores at the 12 week follow-up only (p=0.01). There were no significant differences in their SPADI disability scores (p=0.09). The local plus steroid group had significant improvement in SPADI pain and disability scores at all follow-up time points (p=0.001).

The optimal treatment for adhesive capsulitis remains unclear. Our study demonstrated that patients receiving an arthrographic injection of either steroid and local anesthetic or local anesthetic alone had significantly improved post-injection pain scores. However, only the steroid and local anesthetic group demonstrated improved SPADI disability and Constant scores. Thus, we believe that either treatment may be a good option for patients with adhesive capsulitis and can reliably relieve pain, but we would recommend the steroid with local anesthetic over the local anesthetic alone as it may provide improved function.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 19 - 19
1 Oct 2014
Venne G Pickell M Pichora D Bicknell R Ellis R
Full Access

Reverse shoulder arthroplasty has a high complication rate related to glenoid implant instability and screw loosening. Better radiographic post-operative evaluation may help in understanding complications causes. Medical radiographic imaging is the conventional technique for post-operative component placement analysis. Studies suggest that volumetric CT is better than use of CT slices or conventional radiographs. Currently, post-operative CT use is limited by metal-artifacts in images. This study evaluated inter-observer reliability of pre-operative and post-operative CT images registration to conventional approaches using radiographs and CT slices in measuring reverse shoulder arthroplasty glenoid implant and screw percentage in bone.

Pre-operative and post-operative CT scans, and post-operative radiographs were obtained from six patients that had reverse shoulder arthroplasty. CT scans images were imported into a medical imaging processing software and each scapula, glenoid implant and inferior screw were reconstructed as 3D models. Post-operative 3D models were imported into the pre-operative reference frame and matched to the pre-operative scapula model using a paired-point and a surface registration. Measurements on registered CT models were done in reference to the pre-operative scapula model coordinate frame defined by a computer-assisted designed triad positioned in respect to the center of the glenoid fossa and trigonum scapulae (medial-lateral, z axis) and superior and inferior glenoid tubercle (superior-inferior, y axis). The orthogonal triad third axis defined the anterior-posterior axis (x axis). A duplicate triad was positioned along the central axis of the glenoid implant model. Using a virtual protractor, the glenoid implant inclination was measured from its central axis and the scapula transverse plane (x - z axes) and version from the coronal plane (y - z axes). Inferior screw percentage in bone was measured from a Boolean intersection operation between the pre-operative scapula model and the inferior screw model.

For CT slices and radiographic measurements, a first 90-degree Cobb angle, from medical records software, was positioned from the trigonum scapulae to the centre of the central peg. Using the 90-degree line as reference, a second Cobb angle was drawn from the most superior to the most inferior point of the glenoid implant for inclination and from of the most anterior to the most posterior point for version. Version can only be measured using CT slices. Screw percentage in bone was calculated from screw length measures collected with a distance-measuring tool from the software.

For testing the inter-observer reliability of the three methods, measures taken by three qualified observers were analysed using an intra-class correlation coefficient (ICC) method.

The 3D registration method showed excellent reliability (ICC > 0.75) in glenoid implant inclination (0.97), version (0.98) and screw volume in bone (0.99). Conventional methods showed poor reliability (ICC < 0.4); CT-slice inclination (0.02), version (0.07), percentage of screw in bone (0.02) and for radiographic inclination (0.05) and percentage screw in bone (0.05).

This CT registration of post-operative to pre-operative novel method for quantitatively assessing reverse shoulder arthroplasty glenoid implant positioning and screw percentage in bone, showed excellent inter-observer reliability compared to conventional 2D approaches. It overcomes metal-artifact limitations of post-operative CT evaluation.