Knee OA affects more frequently both joints. The involvement of the medial compartment involves an axis deviation of both limbs. The solution allows unicompartmental prosthetic restoration of articular defect and the axis of the patient's physiological load. Many studies have shown that the simultaneous prosthetic solution, compared to excellent results as regards the functional rehabilitation, increases the perioperative risks. Our experience with robotic surgery (Makoplasty), allowed us to show that this procedure reduces maximally perioperative risks, given the less invasive procedure compared to traditional methods, and how can ensure the same clinical result in the two joints in terms of restoration of joint biomechanics that of the axis of load.
Isolated lateral compartment osteoarthritis (OA) occurs in 5–10% of knees with OA [1, 2]. Lateral unicompartmental knee arthroplasty (LUKA) emerged as a treatment to this disease in the early 80s but challenging surgical technique has limited the prevalence of this treatment option [1–3]. A robotic-arm assisted surgical technique (MAKO Surgical Corp.) has emerged as a way to achieve precise implant positioning which can potentially improve surgical outcomes. The purpose of this study was to evaluate short term outcomes for patients that received LUKA using a novel robotic-arm assisted surgical technique.Introduction
Objectives
Stimulation of bone healing and bone formation through local application of growth factors may improve the clinical outcome in high tibial osteotomy in varus knee. The goal of the present study is to evaluate the effectiveness of autologous growth factors asscociated with or without granular coralline hydroxyapatite used to fill open wedge defects after tibial osteotomy for valgisation in 13 patients with medial femorotibial degeneration. The integration of the coralline hydroxyapatite was complete in every case; we did not encounter any general or local problems, nor were there any intra-operative, peri-operative or post-operative complications. We conclude that local application of autologous growth factors associated with coralline hydroxyapatite is a good solution to stimulate callus formation and ossification in the early phase of bone healing and can substitute bone graft to fill bone defects.