Advertisement for orthosearch.org.uk
Results 1 - 20 of 31
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 109 - 109
1 May 2019
Berend K
Full Access

Although the introduction of ultraporous metals in the forms of acetabular components and augments has substantially improved the orthopaedic surgeon's ability to reconstruct severely compromised acetabuli, there remain some revision THAs that are beyond the scope of cups, augments, and cages. In situations involving catastrophic bone loss, allograft-prosthetic composites or custom acetabular components may be considered. Custom components offer the potential advantages of immediate, rigid fixation with a superior fit individualised to each patient. These custom triflange components require a preoperative CT scan with three-dimensional (3-D) reconstruction using rapid prototyping technology, which has evolved substantially during the past decade. The surgeon can fine-tune exact component positioning, determine location and length of screws, modify the fixation surface with, for example, the addition of hydroxyapatite, and dictate which screws will be locked to enhance fixation. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means.

We previously reported on our center's experience with 23 patients (24 hips) treated with custom triflange components with minimum 2-year follow-up. This method of reconstruction was used in a cohort of patients with Paprosky Type 3B acetabular defects, which represented 3% (30 of 955) of the acetabular revisions we performed during the study period of 2003 to 2012. At a mean follow-up of 4.8 years (range, 2.3 – 9 years) there were four subsequent surgical interventions: two failures secondary to sepsis, and one stem revision and one open reduction internal fixation for periprosthetic femoral fracture. There were two minor complications managed nonoperatively, but all of the components were noted to be well-fixed with no obvious migration or loosening observed on the most recent radiographs. Harris hip scores improved from a mean of 42 (SD ±16) before surgery to 65 (SD ±18) at latest follow-up (p < 0.001). More recently, we participated in a multi-center study of 95 patients treated with reconstruction using custom triflange components who had a mean follow-up of 3.5 years. Pelvic defects included Paprosky Type 2C, 3A, 3B and pelvic discontinuity. Concomitant femoral revision was performed in 21 hips. Implants used a mean of 12 screws with 3 locking screws. Twenty of 95 patients (21%) experienced at least one complication, including 6% dislocation, 6% infection, and 2% femoral-related issues. Implants were ultimately removed in 11% of hips. One hip was revised for possible component loosening. Survivorship with aseptic loosening as the endpoint was 99%.

Custom acetabular triflange components represent yet another tool in the reconstructive surgeon's armamentarium. These devices can be helpful in situations of catastrophic bone loss, achieving reliable fixation. Clinical results are inferior to both primary THA and more routine revision THA. Patients and surgeons should be aware of the increased complications associated with these complex hip revisions.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 45 - 45
1 May 2019
Berend K
Full Access

Converting UKA to TKA can be difficult, and specialised techniques are needed. Issues include bone loss, joint line approximation, sizing, and rotation. Determining the complexity of conversion preoperatively helps predict the need for augmentation, grafting, stems, or constraint.

In a 2009 study from our center, 50 UKA revised to TKA (1997–2007) were reviewed: 9 modular fixed-bearing, 4 metal-backed nonmodular fixed-bearing, 8 resurfacing onlay, 10 all-polyethylene step-cut, and 19 mobile bearing designs; 5 knees failed due to infection, 5 due to wear and/or instability, 10 for pain or progression of arthritis, 8 for tibial fracture or severe subsidence, and 22 due to loosening of either one or both components. Insert thickness was no different between implants or failure modes. Stemmed component use was most frequent with nonmodular components (50%), all-polyethylene step-cut implants (44%), and modular fixed-bearing implants (33%; P=0.40). Stem use was highest in tibial fracture (86%; P=0.002). Augment use was highest among all-polyethylene step-cut implants (all-polyethylene, 56%; metal-backed, 50%; modular fixed-bearing, 33%; P=0.01). Augmentation use was highest in fracture (86%) and infection (67%), with a significant difference noted between failure modes (P=0.003). Failure of nonmodular all-polyethylene step-cut devices was more complex than resurfacing or mobile bearing. Reestablishing the joint line, ligamentous balance, and durable fixation are critical to assuring a primary outcome.

In a 2013 multicenter study of 3 institutions including ours, a total of 175 revisions of medial UKA in 168 patients (average age: 66 years) performed from 1995 to 2009 with a minimum 2-year clinical follow-up were reviewed. The average time from UKA to revision TKA was 71.5 months (2–262). The four most common reasons for failure were femoral or tibial loosening (55%), progressive arthritis of the lateral or patellofemoral joints (34%), polyethylene failure (4%) and infection (3%). Mean follow-up after revision was 75 months. Nine of 175 knees (4.5%) were subsequently revised at an average of 48 months (6–123). The average Knee Society pain and function score increased to 75 and 66, respectively. In the present series, the re-revision rate after revision TKA from UKA was 4.5% at an average of 75 months.

In a current study from our center, 184 patients (193 UKA) underwent revision procedures (1996–2015) with minimum 2-year follow-up. Mean age was 63.5 (37–84) years, body mass index was 32.3 (19–57) kg/m2, and interval after UKA was 4.8 (0–35) years. Most prevalent indications for revision were aseptic loosening (42%), arthritic progression (20%) and tibial collapse (14%). At 6.1 years mean follow-up (2–20), 8 knees (4.1%) have required re-revision involving any part, which is similar to what we recently reported at 5.5 years in a group of patients who underwent primary TKA (6 of 189; 3.2%), and much lower than what we observed at 6.0 years in a recent report of patients who underwent aseptic revision TKA (35 of 278; 12.6%). In the study group, Knee Society clinical and function scores improved from 50.8 and 52.1 preoperatively to 83.4 and 67.6 at most recent evaluation, respectively. Re-revisions were for aseptic loosening (3), instability (2), arthrofibrosis (2), and infection (1).

Compared to published individual institution and national registry data, re-revision rates of failed UKA are equivalent to revision rates of primary TKA and substantially better than re-revision rates of revision TKA. These data should be used to counsel patients undergoing revision UKA to TKA.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 17 - 17
1 Aug 2018
Lombardi A Berend K Morris M Crawford D Adams J
Full Access

Total hip arthroplasty (THA) continues moving to the outpatient arena, and may be feasible for some conversion and revision scenarios. Controversy surrounds appropriate patient selection. The purpose of this study is to report complications associated with outpatient revision and conversion THA, and to determine if comorbidities are associated with complications or overnight stay.

From June 2013 through March 2018, 43 patients (44 hips) underwent conversion (n=12) or revision (n=32) THA at a free-standing ambulatory surgery center. Mean patient age was 58.4 years, and 52% of patients were male. Conversion procedures were for failed resurfacing in two, failed hemiarthroplasty in one, and failed fracture fixation with retained hardware in 9. Revision procedures involved head only in one, head and liner in 20, cup and head in 7, stem only in 2, and stem and liner in 2.

Forty-four (93%) were discharged same day without incident, none required transfer to acute facility, and 3 required overnight stay with 2 of these for convenience and only one for a medical reason, urinary retention. Three patients with early superficial infection were successfully treated with oral antibiotics. There were no major complications, readmissions, or subsequent surgeries within 90 days. One or more major comorbidities were present in 17 patients (39%) including 1 valvular disease, 8 arrhythmia, 2 thromboembolism history, 3 obstructive sleep apnea, 6 chronic obstructive pulmonary disease, 2 asthma, 4 frequent urination, and 1 renal disease. The single patient who stayed overnight for a medical reason had no major medical comorbidities.

Outpatient arthroplasty, including revision THA in some scenarios, is safe for many patients. Presence of medical comorbidities was not associated with risk of complications. The paradigm change of patient education, medical optimization, and a multimodal program to mitigate risk of blood loss and reduce need for narcotics facilitates performing arthroplasty safely in an outpatient setting.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 126 - 126
1 Jun 2018
Berend K
Full Access

It is a not so uncommon clinical scenario: well-fixed, well-aligned, balanced total knee arthroplasty with continued pain. However, radiographs also demonstrate an unresurfaced patella. The debate continues and the controversy remains as whether or not to routinely resurface the patella in total knee arthroplasty. In perhaps the most widely referenced article on the topic, the overall revision rates were no different between the resurfaced (9%) and the unresurfaced (12%) groups and thus their conclusion was that similar results can be obtained with and without resurfacing. However, a deeper look in to the data in this study shows that 4 times more knees in the unresurfaced group were revised for patellofemoral problems.

A more recent study concluded that selectively not resurfacing the patella provided similar results when compared to routinely resurfacing. The study does emphasise however, that this conclusion depends greatly on femoral component design and operative diagnoses. This suggests that selective resurfacing with a so-called “patella friendly” femoral component in cases of tibio-femoral osteoarthritis, is a safe and effective strategy. Finally, registry data would support routine resurfacing with a 2.3 times higher relative risk of revision seen in the unresurfaced TKA. Regardless of which side of the debate one lies, the not so uncommon clinical scenario remains; what do we do with the painful TKA with an unresurfaced patella.

Precise and accurate diagnosis of the etiology of a painful TKA can be very difficult, and there is likely a strong bias towards early revision with secondary patellar resurfacing in the painful TKA with an unresurfaced TKA. At first glance, secondary resurfacing is associated with relatively poor outcomes. Correia, et al. reported that only half the patients underwent revision TKA with secondary resurfacing had resolution of their complaints. Similarly, only 53% of patients in another series were satisfied with the procedure and pain relief. The conclusions that can be drawn from these studies and others are that either routine patellar resurfacing should be performed in all TKA or, perhaps more importantly, we need to better understand the etiology of pain in an otherwise well-aligned, well-balanced, well-fixed TKA.

It is this author's contingency that the presence of an unresurfaced patella leads surgeons to reoperate earlier, without truly identifying the etiology of pain or dissatisfaction. This strong bias; basically there is something more that can be done, therefore we should do it, is the same bias that leads to early revision of partial knee arthroplasty. While very difficult, we as knee surgeons should not revise a partial knee or secondarily resurface a patella due to pain or dissatisfaction. Doing so, unfortunately, only works about half the time.

The diagnostic algorithm for evaluating the painful, uresurfaced TKA includes routinely ruling out infection with serum markers and an aspiration. Pre-arthroplasty radiographs should be obtained to confirm suitability and severity of disease for an arthroplasty. An intra-articular diagnostic injection with Marcaine +/− corticosteroid should provide significant pain relief. MARS MRI may be beneficial to evaluate edema within the patella. Lastly, operative implant stickers to confirm implant manufacturer and type are critical as some implants perform less favorably with unresurfaced patellae. To date, no studies of secondary resurfacing describe the results of this, or similar, algorithms for defining patellofemoral problems in the unresurfaced TKA and therefore it is still difficult to conclude that poor results are not simply due to our inherent bias towards early revision and secondary resurfacing of the unresurfaced patella.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 47 - 47
1 Jun 2018
Berend K
Full Access

Introduction

Total joint arthroplasty is associated with substantial blood loss as well as changes in basic metabolic labs. Routinely patients receive multiple post-operative blood draws for measuring hematocrit, hemoglobin (H&H), and basic metabolic panels (BMP). Based on a multimodal approach to blood conservation and pre-operative optimization, we questioned the need to check daily labs on our inpatient primary total hip and knee patients. The purpose of this study was to identify risk factors for transfusion and metabolic abnormalities requiring treatment in an attempt to reduce the number of post-operative blood draws and labs.

Methods

We retrospectively reviewed all 1134 patients who underwent primary total hip (THA) or total knee arthroplasty (TKA) from July 2016 to March 2017 in our inpatient hospital setting. There were 733 TKA and 401 THA. Pre- and post-operative lab values were reviewed and correlated with transfusion and medical treatments.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 71 - 71
1 Jun 2018
Berend K
Full Access

Although the introduction of ultraporous metals in the forms of acetabular components and augments has substantially improved the orthopaedic surgeon's ability to reconstruct severely compromised acetabuli, there remain some revision THAs that are beyond the scope of cups, augments, and cages. In situations involving catastrophic bone loss, allograft-prosthetic composites or custom acetabular components may be considered. Custom components offer the potential advantages of immediate, rigid fixation with a superior fit individualised to each patient. These custom triflange components require a pre-operative CT scan with 3-D reconstruction using rapid prototyping technology. The surgeon can fine-tune exact component positioning, determine location and length of screws, modify the fixation surface with, for example, the addition of hydroxyapatite, and dictate which screws will be locked to enhance fixation. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means.

We previously reported on our center's experience with 23 patients (24 hips) treated with custom triflange components with minimum 2-year follow-up. This method of reconstruction was used in a cohort of patients with Paprosky Type 3B acetabular defects, which represented 3% (30 of 955) of the acetabular revisions we performed during the study period of 2003 to 2012. At a mean follow-up of 4.8 years (range, 2.3–9 years) there were 4 subsequent surgical interventions: 2 failures secondary to sepsis, and 1 stem revision and 1 open reduction internal fixation for periprosthetic femoral fracture. There were two minor complications managed non-operatively, but all of the components were noted to be well-fixed with no obvious migration or loosening observed on the most recent radiographs. Harris Hip Scores improved from a mean of 42 (SD ±16) before surgery to 65 (SD ±18) at latest follow-up (p<0.001). More recently, we participated in a multi-center study of 95 patients treated with reconstruction using custom triflange components w a mean follow-up of 3.5 years. Pelvic defects included Paprosky Type 2C, 3A, 3B and pelvic discontinuity. Concomitant femoral revision was performed in 21 hips. Implants used a mean of 12 screws with 3 locking screws. Twenty of 95 patients (21%) experienced at least one complication, including 6% dislocation, 6% infection, and 2% femoral-related issues. Implants were ultimately removed in 11% of hips. One hip was revised for possible component loosening. Survivorship with aseptic loosening as the endpoint was 99%.

Custom acetabular triflange components represent yet another tool in the reconstructive surgeon's armamentarium. These devices can be helpful in situations of catastrophic bone loss, achieving reliable fixation. Clinical results are inferior to both primary THA and more routine revision THA. Patients and surgeons should be aware of the increased complications associated with these complex hip revisions.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 31 - 31
1 Aug 2017
Berend K
Full Access

Over the past fifteen years, the average length of stay for total hip (THA) and total knee arthroplasty (TKA) has gradually decreased from several days to overnight. The most logical and safest next step is outpatient arthroplasty. Through the era of so-called minimally invasive surgery, perhaps the most intriguing advancements are not related to the surgery itself, but instead the areas of rapid recovery techniques and peri-operative protocols. Rapid recovery techniques and peri-operative protocols have been refined to allow for same-day discharge with improved outcomes. In addition to Rapid Recovery techniques for the clinical care of the outpatient, one critical component to same-day total knee arthroplasty is the efficient performance and simplicity of the procedure itself. Simplified instrumentation and elimination of modularity can provide that efficiency and simplicity.

All polyethylene tibial components have been mostly supplanted by modular metal-backed designs in recent years. However, mounting evidence suggests that survivorship of TKA with an all-poly tibia is superior to TKA with metal-backed, modular designs in all age groups except younger than 55, in which survival is equal to a modular design. Furthermore, this survival advantage was unaffected by obesity. Combining these excellent clinical results with the efficiency of a non-modular component can add to the efficiency and simplicity of the surgical technique. Therefore, in outpatient total knee arthroplasty, the all-poly tibia truly represents the less is more mentality.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 59 - 59
1 Apr 2017
Berend K
Full Access

Although the introduction of ultraporous metals in the forms of acetabular components and augments has substantially improved the orthopaedic surgeon's ability to reconstruct severely compromised acetabuli, there remain some revision THAs that are beyond the scope of cups, augments, and cages. In situations involving catastrophic bone loss, allograft-prosthetic composites or custom acetabular components may be considered. Custom components offer the potential advantages of immediate, rigid fixation with a superior fit individualised to each patient. These custom triflange components require a pre-operative CT scan with three-dimensional (3-D) reconstruction using rapid prototyping technology, which has evolved substantially during the past decade. The surgeon can fine-tune exact component positioning, determine location and length of screws, modify the fixation surface with, for example, the addition of hydroxyapatite, and dictate which screws will be locked to enhance fixation. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means.

We previously reported on our center's experience with 23 patients (24 hips) treated with custom triflange components with minimum 2-year follow-up. This method of reconstruction was used in a cohort of patients with Paprosky Type 3B acetabular defects, which represented 3% (30 of 955) of the acetabular revisions we performed during the study period of 2003 to 2012. At a mean follow-up of 4.8 years (range, 2.3–9 years) there were 4 subsequent surgical interventions: 2 failures secondary to sepsis, and 1 stem revision and 1 open reduction internal fixation for periprosthetic femoral fracture. There were 2 minor complications managed nonoperatively, but all of the components were noted to be well-fixed with no obvious migration or loosening observed on the most recent radiographs. Harris hip scores improved from a mean of 42 (SD ± 16) before surgery to 65 (SD ± 18) at latest follow-up (p<0.001). More recently, we participated in a multi-center study of 95 patients treated with reconstruction using custom triflange components who had a mean follow-up of 3.5 years. Pelvic defects included Paprosky Type 2C, 3A, 3B and pelvic discontinuity. Concomitant femoral revision was performed in 21 hips. Implants used a mean of 12 screws with 3 locking screws. Twenty of 95 patients (21%) experienced at least one complication, including 6% dislocation, 6% infection, and 2% femoral-related issues. Implants were ultimately removed in 11% of hips. One hip was revised for possible component loosening. Survivorship with aseptic loosening as the endpoint was 99%,

Custom acetabular triflange components represent yet another tool in the reconstructive surgeon's armamentarium. These devices can be helpful in situations of catastrophic bone loss, achieving reliable fixation. Clinical results are inferior to both primary THA and more routine revision THA. Patients and surgeons should be aware of the increased complications associated with these complex hip revisions.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 6 - 6
1 Apr 2017
Berend K
Full Access

Length of hospital stay has been decreased to the point where the next logical progression in arthroplasty surgery is outpatient arthroplasty procedures. This trend has already happened for procedures formerly regarded as “inpatient” procedures such as upper extremity surgery, arthroscopy, anterior cruciate ligament reconstruction, foot and ankle procedures, and rotator cuff repair. Refinement of surgical techniques, anesthesia protocols, and patient selection has facilitated this transformation. Today, hip, knee and shoulder arthroplasty can be performed safely as outpatient procedures by implementing surgical and protocol refinements. Understanding and addressing, safely, the reasons that surgeons and patients believe they “need” a hospital admission is the cornerstone to outpatient arthroplasty. This program can be highly beneficial to patients, surgeons, anesthesia, ambulatory surgery centers, and payors as arthroplasty procedures shift to the outpatient space. It will always cost more to perform these procedures in hospitals therefore opening up significant opportunities. The less efficiently run hospital in-patient setting demands over-treatment of each patient to fit him or her into the mold of inpatient surgery. Patient satisfaction is very high in the outpatient setting. Patients can recover in their own home with reduced inpatient services and by utilizing outpatient physical therapy. The surgeon efficiently controls the local environment, and thus the overall patient experience and satisfaction are improved in the outpatient setting. The surgeon's role changes from commoditised technician in the hospital setting to coordinator of the entire care experience including pre-operative care, imaging, anesthesia, peri-operative care mapping, post-operative care, and enhanced coordination with therapy providers. An outpatient arthroplasty program involves multiple individuals and specialised protocols for pre-operative, peri-operative, and post-operative care. These include patient selection and education, anesthesia and analgesia, and minimally invasive surgical techniques. By implementing these protocols and a minimally invasive Watson-Jones approach, one study has reported 77% utilization of outpatient THA, 99% success with day of surgery discharge, and a 1% readmission or complication rate.

Outpatient arthroplasty is safe, it's better for us and our patients, and it is here now. In an outpatient environment the surgeon actually spends more time with the patients and family in a friendly environment. Patients feel safe and well cared for, and are highly satisfied with their arthroplasty experience. In a typical day a surgeon can perform 6–8 outpatient arthroplasty procedures with multiple interactions with each patient and their family throughout the day.

Avoidance of narcotics with peripheral and local blocks will increase the eligibility for outpatient surgery and decrease the need for overnight hospitalization. The singular focus on the patient and the avoidance of over-treatment will become the standard of care for total hip and total knee arthroplasty in much the same way as for other procedures once deemed “inpatient” surgeries.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 107 - 107
1 Apr 2017
Berend K
Full Access

The use of a tourniquet when performing total knee arthroplasty (TKA) is subject to different methodologies. Some surgeons see no need to use a tourniquet, others use the tourniquet only during cementation, some utilise the tourniquet from prior to incision to after cementation, while others maintain throughout and release after closure. At our center, use of the tourniquet is part of the TKA routine: position the patient, administer antibiotics, inflate the tourniquet, note pressure and time, complete preparation and draping, set time-out, and cut. We release the tourniquet after cementation of components, prior to assessment of patellofemoral tracking and closure. Advantages of using a tourniquet are enhanced TKA durability, less blood during cementation, and reduced intra-operative blood loss and need for transfusion. Adequately preparing the bone surfaces and cleaning away blood and fat are essential to good cement technique, providing better interdigitation and penetration and resulting in fewer radiolucencies and longer survivorship. Lateral retinacular release, performed to alleviate patellar maltracking, is not a benign procedure and is associated with increased patellar complications including loosening, fracture, and avascular necrosis. Several articles, including one from our center, have studied the effect of tourniquet deflation and patellar tracking, observing 31% to 86% reduction in maltracking and indication for lateral release when assessing after deflation. A prospective study of 28 patients undergoing same day bilateral TKA using a tourniquet inflated prior to incision and released after cementation on one side and either no tourniquet or tourniquet only during cementation of the contralateral side found slightly lowered quadriceps strength in the tourniquet group that persisted for up to 3 months. However, another recent prospective study of 120 patients assessing wound closure in 90 degrees flexion versus full extension, with the combination of an inflated versus deflated tourniquet, found that closure of the knee in flexion after tourniquet deflation significantly decreased post-operative pain and promoted early recovery of ROM. Safe use of the tourniquet is essential to avoid neurologic injury, and includes pneumatic, wider, contoured cuffs, moderate maximum applied pressure, and monitoring during release for emboli and metabolite return. Operative efficiency minimises overall operative and tourniquet time, thereby reducing risk of complications. Several meta-analysis reviews have compared TKA performed with versus without use of a tourniquet. All found using a tourniquet resulted in a significant decrease in operative time and intra-operative blood loss, but a trend for increase in deep vein thrombosis and wound complications. Other meta-analysis articles have studied time of tourniquet release comparing early versus late. These studies unanimously found late release to be associated with substantial increase in post-operative complications. Some studies found early release before wound closure to be associated with increased total blood loss and greater drop in hemoglobin while the other studies reported no differences in these measures. Our practice is to deflate the tourniquet prior to wound closure and to achieve hemostatis. The use of a tourniquet to perform TKA facilitates efficient operative technique, improves visualization of anatomical structures, facilitates the surgeon's focus on proper component positioning, and facilitates good cement technique.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 99 - 99
1 Dec 2016
Berend K
Full Access

For as long as surgeons have been performing total and partial knee arthroplasty, surgeons have debated the efficacy, safety, and requirement of a pneumatic tourniquet. Advocates claim that blood loss is less, visualization is improved, and the cement technique is better with the use of a tourniquet. Others would argue that the use of the tourniquet or limited tourniquet use is safer, does not increase blood loss, and does not compromise visualization and cementing technique.

Multiple meta-analyses have been performed that provide very little true evidence of superiority. One such study from Yi et al, concludes that the use of the tourniquet reduces surgical time, intraoperative and total blood loss, but increases postoperative total blood loss. They also conclude that DVT and SSI are “relatively augmented” with use. There may be issues with the timing of tourniquet release in these pooled studies, with others stating that releasing the tourniquet prior to wound closure, supposedly for hemostasis, significantly increases the total and calculated blood loss. Huang et al report that with proper control in the amount of pressure, a debatable topic in and of itself, and shorter duration of inflation, release after closure can reduce blood loss without increased complications. One additional issue is patellar tracking, and the need to lateral release. The tourniquet significantly affects assessment of tracking and the need for lateral release, potentially causing the surgeon to unnecessarily perform a lateral release with the tourniquet inflated.

Lastly, research has suggested that using a tourniquet may affect recovery of lower extremity strength and function. Dennis et al compared quadriceps strength and found that use of the tourniquet resulted in “slightly” lower strength postoperatively out to 3 months. The fatal flaw in this study and others is that there is no accepted minimal clinically important difference for quad function, and thus they powered their study to detect a difference of 12 Nm, and the actual difference, while statistically significant, did not even meet their arbitrary power set point. Thus, while strength may be slightly impaired by the use of a tourniquet, it was not different enough to meet their criteria. Additionally, in their study, 64% of the “no-tourniquet” knees actually had a tourniquet used for cementation to “minimise blood at the bone-cement interface and maximise fixation”. Clearly, even these authors are concerned with the results of not using a tourniquet.

These authors utilise a pneumatic tourniquet in all cases of primary TKA and release the tourniquet prior to closure to ensure hemostasis and accurately assess patellar tracking. In doing so, we use the methodology of limb occlusion pressure to minimise the pressure to that necessary for ensuring a clear field. Additionally, these authors emphasise the ultimate in surgical efficiency allowing for extremely short tourniquet times, even in the most difficult cases. As an example, in 1300 consecutive obese patients with BMI equal or greater than 35, the average tourniquet time for primary TKA was 49 minutes. These short times, with the minimum pressure allow for the best of both worlds and little to no downside.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 79 - 79
1 Dec 2016
Berend K
Full Access

Over the past fifteen years, the average length of stay for total knee arthroplasty (TKA) has gradually decreased from several days to overnight. The most logical and safest next step is outpatient arthroplasty. Through the era of so-called minimally invasive surgery, perhaps the most intriguing advancements are not related to the surgery itself, but instead the areas of rapid recovery techniques and perioperative protocols. Rapid recovery techniques and perioperative protocols have been refined to allow for same-day discharge with improved outcomes.

As mentioned, the single most important outcome from the minimally invasive movement has been the multi-modal approach to pain management of patients undergoing arthroplasty. Along with blood loss management, using tranexamic acid and hypotensive anesthetic techniques, this multi-modal program is the most important variable in reducing or avoiding side-effects. In any arthroplasty procedure, side-effects that need to be addressed include the negative effects of narcotics and blood loss. Anesthetic techniques, utilizing local nerve blocks, such as the adductor canal block and sciatic blocks for knee arthroplasty augment intraoperative anesthesia and provide postoperative pain relief and quicker mobilization. Additionally, pericapsular injection with a cocktail of local anesthetic helps significantly with pain relief and recovery reducing the amount of oral narcotic utilised in the early postoperative period. Many have utilised liposomal bupivacaine in these cocktails to successfully increase the period of pain relief.

The use of multi-modal perioperative protocols can help avoid narcotics and helps avoid the side-effects of nausea. We also utilise an aggressive prophylactic antiemetic program with dexamethasone, ondansetron and a scopolamine patch. Patients without any significant cardiovascular history are given celecoxib preoperatively, which is continued for approximately two weeks postoperatively. Immediately postoperative, acetaminophen and additional dexamethasone are administered intravenously.

The multi-modal protocols to address fear, risk, and side-effects will increase the eligibility for outpatient surgery and decrease the need for overnight hospitalization. By focusing on the patient and avoiding over-treatment, outpatient arthroplasty is quickly becoming the standard of care for total hip replacement in the same way other procedures transitioned from hospital in-patient surgeries to ambulatory procedures.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 53 - 53
1 Dec 2016
Berend K
Full Access

Background

Modular component options can assist the surgeon in addressing complex femoral reconstructions in total hip arthroplasty (THA) by allowing for customization of version control and proximal to distal sizing. Tapered stem fixation has a proven excellent track record in revision THA. Early reports by Cherubino et al. (Surg Technol Int 2010) 65 revision THA with an average follow up of 109 months (range, 76–131) demonstrate satisfactory integration in 100% of cases. Rodriguez et al.(J Arthroplasty 2009) report 96% survival in 102 revision THA at nearly 4 years average follow up. We review the early clinical results of a modular tapered femoral revision system.

Methods

A query of our practice's arthroplasty registry revealed 60 patients (61 hips) who signed an IRB-approved general research consent allowing retrospective review, and underwent THA performed with the modular femoral revision system between December 2009 and April 2012. There were 35 men (58%) and 25 women (42%). Mean age was 65.1 years (range, 35–94) and BMI was 31.3 kg/m2 (range, 14–53). Procedures were complex primary in 1 hip, conversion in 6 (10%), revision in 32 (53%), and two-staged exchange for infection in 22 (33%). Two-thirds of the procedures included complete acetabular revision (n=40), while 31% (19) involved liner change only and 2 were isolated femoral revisions.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 57 - 57
1 Nov 2016
Berend K
Full Access

To progress to a same day surgery program for arthroplasty, it is important that we examine and resolve the issues of why patients stay in the hospital. The number one reason is fear and anxiety of the unknown and of surgical pain. The need for hospital stay is also related to risk arising from comorbidities and medical complications. Patients also need an extended stay to manage the side effects of our treatment, including after effects of narcotics and anaesthesia, blood loss, and surgical trauma.

The process begins pre-operatively with an appropriate orthopaedic assessment of the patient and determination of the need for surgery. The orthopaedic team must motivate the patient, and ensure that the expectations of the patient, family and surgeon are aligned. In conjunction with our affiliated hospitalist group that performs almost all pre-admission testing, we have established guidelines for patient selection for outpatient arthroplasty. The outpatient surgical candidate must have failed conservative measures, must have appropriate insurance coverage, and must be functionally independent. Previous or ongoing comorbidities that cannot be optimised for safe outpatient care may include: congestive heart failure, or valve disease; chronic obstructive pulmonary disease, or home use of supplemental oxygen; untreated obstructive sleep apnea with a BMI >40 kg/m2; hemodialysis or severely elevated serum creatinine; anemia with hemoglobin <13.0 g/dl; cerebrovascular accident or history of delirium or dementia; and solid organ transplant. Pre-arthroplasty rehabilitation prepares the patient for peri-operative protocols. Patients meet with a physical therapist and are provided with extensive educational materials before surgery to learn the exercises they will need for functional recovery. Enhancement of our peri-operative pain management protocols has resulted in accelerated rehabilitation. The operative intervention must be smooth and efficient, but not hurried. Less invasive approaches and techniques have been shown to decrease pain, reduce length of stay, and improve outcomes, especially in the short term.

Between June 2013 and December 2015, 1957 primary knee arthroplasty procedures (1010 total, 947 partial) were performed by the author and his 3 associates at an outpatient surgery center. Seven percent of patients required an overnight stay, with a majority for reasons of convenience related to travel distance or later operative time. Importantly, no one has required overnight stay for pain management. Outpatient arthroplasty is safe, it's better for us and our patients, and it is here now. In an outpatient environment the surgeon actually spends more time with the patients and family in a friendly environment. Patients feel safe and well cared for, and are highly satisfied with their arthroplasty experience.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 57 - 57
1 Nov 2015
Berend K
Full Access

To progress to a same day surgery program for arthroplasty, it is important that we examine and resolve the issues of why patients stay in the hospital. The number one reason is fear and anxiety for the unknown and for surgical pain. The need for hospital stay is also related to risk arising from comorbidities and medical complications. Patients also need an extended stay to manage the side effects of our treatment, including after-effects of narcotics and anesthesia, blood loss, and surgical trauma. The process begins pre-operatively with an appropriate orthopaedic assessment of the patient and determination of the need for surgery. The orthopaedic team must motivate the patient, and ensure that the expectations of the patient, family and surgeon are aligned. In conjunction with our affiliated hospitalist group that performs almost all pre-admission testing, we have established guidelines for patient selection for outpatient arthroplasty. The outpatient surgical candidate must have failed conservative measures, must have appropriate insurance coverage, and must be functionally independent. Previous or ongoing comorbidities that contraindicate the outpatient setting include: cardiac – prior revascularization, congestive heart failure, or valve disease; pulmonary – chronic obstructive pulmonary disease, or home use of supplemental oxygen; untreated obstructive sleep apnea – BMI >40 kg/m2; renal disease – hemodialysis or severely elevated serum creatinine; gastrointestinal – history or post-operative ileus or chronic hepatic disease; genitourinary – history of urinary retention or severe benign prostatic hyperplasia; hematologic – chronic Coumadin use, coagulopathy, anemia with hemoglobin <13.0 g/dl, or thrombophilia; neurological – history of cerebrovascular accident or history of delirium or dementia; solid organ transplant. Pre-arthroplasty rehabilitation prepares the patient for peri-operative protocols. Patients meet with a physical therapist and are provided with extensive educational materials before surgery to learn the exercises they will need for functional recovery. Enhancement of our peri-operative pain management protocols has resulted in accelerated rehabilitation. The operative intervention must be smooth and efficient, but not hurried. Less invasive approaches and techniques have been shown to decrease pain, reduce length of stay, and improve outcomes, especially in the short term.

In 2014, 385 primary partial knee arthroplasty procedures (7 patellofemoral replacement, 13 lateral, and 365 medial) were performed by the author and his 3 associates at an outpatient surgery center. Of those, 348 (95%) went home the same day while 17 (5%) required an overnight stay, with 11 for convenience related to travel distance or later operative time and 6 for medical issues. Outpatient arthroplasty is safe, it's better for us and our patients, and it is here now. In an outpatient environment the surgeon actually spends more time with the patients and family in a friendly environment. Patients feel safe and well cared for, and are highly satisfied with their arthroplasty experience.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 80 - 80
1 Feb 2015
Berend K
Full Access

The goals of total knee arthroplasty (TKA) are to relieve pain, restore function, and provide a stable joint. In regard to types of implants, the workhorses are posterior cruciate retaining (CR), posterior stabilised (PS), and posterior stabilised constrained (PSC) designs. However, the continuum of constraint now ranges from standard cruciate retaining (CR-S) to CR lipped (CR-L), to anterior stabilised (CR-AS), to posterior stabilised, to a PS “plus” that fits with a PS femoral component but provides a small degree of varus-valgus constraint, to a PSC or constrained condylar type of device, to a rotating hinge. As the degree of deformity, bone loss, contracture, ligamentous instability and osteopenia increases, so does the demand for prosthetic constraint. When deformity is minimal and the posterior cruciate ligament (PCL) is intact and functional, a CR-S device is appropriate. For moderate deformity with deficiency or compromise of the PCL, a CR-AS or posterior stabilised device is warranted. In severe cases, with attenuation or absence of either of the collateral ligaments, a constrained condylar device, with options of stems, wedges and augments, is advisable. In salvage situations, when both collaterals are compromised, a rotating hinge should be utilised. Prerequisites for use of a CR-S device are an intact PCL, balanced medial and lateral collateral ligaments, and equal flexion and extension gaps. With a CR-L bearing, a slight posterior lip is incorporated into the sagittal profile of the component to provide a small amount of extra stability in the articulation. It is important for the surgeon to be aware of the design features of the implant system he or she is using. For example, in a system where the CR-S bearing has 3 degrees of posterior slope and the CR-L bearing has no slope, the thickness of a CR-L bearing posteriorly is approximately 2mm greater than the CR-S. A CR-L bearing is indicated for to provide stability where the flexion gap is just slightly looser than the extension gap and the PCL is intact. If the patient's knee is somewhat lax in flexion and stable in extension, a CR-L bearing may help to stabilise both the flexion and extension gaps yet still allow the knee to obtain full extension, whereas if a CR-S bearing in the next thicker size is used to stabilise the flexion gap, a flexion contracture may result. CR-AS bearings are indicated when the flexion and extension gaps are balanced, but the PCL is deficient, and the surgeon does not want to change to a PS design, which requires additional bony resection of intercondylar notch. The PCL is one of the strongest ligaments in the knee, and affords inherent stability to the TKA. In flexion, the PCL not only affords AP stability, but also imparts flexion gap stability, acting as a lateral stabiliser of the medial compartment and a medial stabiliser of the lateral compartment. The PCL has a crucial role with respect to femoral rollback, which imparts added efficiency to the extensor mechanism. PCL retention is a more biologically preserving operative intervention than PS-TKA.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 76 - 76
1 Feb 2015
Berend K
Full Access

Enhanced appreciation of normal knee kinematics and the inability to replicate these in the replaced total knee has led to increased enthusiasm for partial knee arthroplasty by some. These arthroplasties more closely replicate normal kinematics since they inherently preserve the anterior cruciate ligament (ACL). Indications for medial UKA are: anteromedial osteoarthritis with an intact ACL, posterior cruciate ligament, and medial collateral ligament (MCL), full thickness cartilage loss, and correctable deformity demonstrated radiographically with valgus stress view; full thickness cartilage laterally with no central ulcer; <15 degrees of flexion contracture, < 15 degrees varus and > 90 degrees flexion. The state of the patellofemoral joint, chondrocalcinosis, obesity, age and activity level are NOT contraindications to medial mobile-bearing UKA. The only certain contraindications are the presence of inflammatory arthritis or a history of previous high tibial osteotomy (HTO). Advantages of medial UKA are that it preserves undamaged structures, it is a minimally invasive technique with low incidence of perioperative morbidity, preservation of the cruciate mechanism results in more “normal” kinematics versus TKA, it normalises contact forces and pressures in the patellofemoral joint, and it provides better range of motion than TKA. Furthermore, medial UKA results in better function than TKA in gait studies, with demanding activities, such as climbing stairs, having a better “feel”. Pain relief with medial UKA is equivalent or better than TKA, and morbidity and mortality are decreased compared with TKA, as well as venous thromboembolism. Recommended preoperative imaging studies consist of plain radiographs with the following views obtained: standing AP, PA flexed, lateral, Merchant or axial, and valgus stress. There are several surgical perils associated with performing medial UKA. First, in regard to patient selection, avoid medial UKA in patients with residual hyaline cartilage – the joint must be bone on bone. Second, perform a conservative tibial resection with respect to depth to prevent tibial collapse as well as excessive overload of weakened bone, and avoid excessive posterior slope. Perform the tibial resection coplanar with tibial spine/ACL insertion to maximise tibial coverage. Avoid overcorrection of deformity. Do not perform a medial release. Balance flexion/extension gaps meticulously. For mobile-bearing designs, remove all impinging osteophytes. Over 55 published studies report results with mobile-bearing medial UKA, with survival ranging 63.2–100% at mean follow-up ranging from 1 to 17.2 years.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 43 - 43
1 Feb 2015
Berend K
Full Access

Anterior supine intermuscular total hip arthroplasty (ASI-THA) has emerged as a muscle sparing, less-invasive procedure. The anterior interval is both intermuscular and internervous, providing the advantages of little or no muscle dissection, and a true minimally invasive alternative. It is versatile, with reported use expanding beyond the primary realm to revision and resurfacing THA as well as treatment of acute fracture in elderly patients, who due to their diminished regenerative capacity may benefit more from the muscle-sparing nature of the anterior approach. The ASI approach involves the use of a standard radiolucent operative table with the table extender at the foot of the bed and the patient supine. Fluoroscopy is used in every case. A table-mounted femur elevator is utilised to facilitate femoral preparation.

A retrospective review identified 824 patients undergoing 934 consecutive primary ASI-THA performed between January 2007 and December 2010. Age averaged 63.2 years (27‐92), BMI averaged 29.9 kg/m2 (16.9–59.2). Gender was 49% males and 51% females. Stem types were short in 82% and standard length in 18%. Follow-up averaged 23.1 months (1‐73). Operative time averaged 63.1 minutes (29‐143). Blood loss averaged 145.3 mL (25‐1000). Transfusion rate was 3.3% (30 of 914) in single procedures and 80% (8 of 10) in simultaneous bilateral procedures. Length of stay averaged 1.7 days (1‐12). Intraoperatively there were 3 calcar cracks and 1 canal perforation treated with cerclage cables. There were 6 wound complications requiring debridement. Four hips had significant lateral femoral cutaneous nerve parathesias not resolved at 12 months. One femoral nerve palsy occurred. At up to 73 months follow-up there have been 21 revisions (2.2%): 2 infection, 1 malpositioned cup corrected same day, 5 metal complications, 2 dislocations, 2 loose cups with one requiring concomitant stem revision secondary to inability to disarticulate trunnion, 1 femoral subsidence and 8 periprosthetic femoral fractures.

Primary THA can be safely performed utilising this muscle-sparing approach. We did not see an alarmingly high rate of complications. Instead, rapid recovery and quick return to function were observed. ASI-THA appears to be safe. The recovery advantage utilising this surgical approach is irrefutable. There are complications, most notably periprosthetic femur fracture. The rate, however, appears to be low and decreases with increased experience. There is no need for a special operative or fracture table to perform the procedure. Whether the complication rate is higher with the use of these expensive devices is unknown, but our results demonstrate a 2.2% reoperation rate with the use of the ASI approach performed on a standard OR table. Continued refinement of the technical aspects of ASI-THA may lessen the complication rate.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 84 - 84
1 May 2014
Berend K
Full Access

The goals of total knee arthroplasty (TKA) are to relieve pain, restore function, and provide a stable joint. In regard to types of implants, the workhorses are posterior cruciate retaining (CR), posterior stabilised (PS), and posterior stabilised constrained (PSC) designs. However, the continuum of constraint now ranges from standard cruciate retaining (CR-S) to CR lipped (CR-L), to anterior stabilised (CR-AS), to posterior stabilised, to a PS “plus” that fits with a PS femoral component but provides a small degree of varus-valgus constraint, to a PSC or constrained condylar type of device, to a rotating hinge. As the degree of deformity, bone loss, contracture, ligamentous instability and osteopenia increases, so does the demand for prosthetic constraint. When deformity is minimal and the posterior cruciate ligament (PCL) is intact and functional, a CR-S device is appropriate. For moderate deformity with deficiency or compromise of the PCL, a CR-AS or posterior stabilised device is warranted. In severe cases, with attenuation or absence of either of the collateral ligaments, a constrained condylar device, with options of stems, wedges and augments, is advisable. In salvage situations, when both collaterals are compromised, a rotating hinge should be utilised. Prerequisites for use of a CR-S device are an intact PCL, balanced medial and lateral collateral ligaments, and equal flexion and extension gaps. With a CR-L bearing, a slight posterior lip is incorporated into the sagittal profile of the component to provide a small amount of extra stability in the articulation. It is important for the surgeon to be aware of the design features of the implant system he or she is using. For example, in a system where the CR-S bearing has 3 degrees of posterior slope and the CR-L bearing has no slope, the thickness of a CR-L bearing posteriorly is approximately 2mm greater than the CR-S. A CR-L bearing is indicated for to provide stability where the flexion gap is just slightly looser than the extension gap and the PCL is intact. If the patient's knee is somewhat lax in flexion and stable in extension, a CR-L bearing may help to stabilise both the flexion and extension gaps yet still allow the knee to obtain full extension, whereas if a CR-S bearing in the next thicker size is used to stabilise the flexion gap, a flexion contracture may result. CR-AS bearings are required less frequently. They are indicated when the flexion and extension gaps are balanced, but the PCL is deficient, and the surgeon does not want to change to a PS design, which requires additional bony resection of intercondylar notch. The PCL is one of the strongest ligaments in the knee, and affords inherent stability to the TKA. In flexion, the PCL not only affords AP stability, but also imparts flexion gap stability, acting as a lateral stabiliser of the medial compartment and a medial stabiliser of the lateral compartment. The PCL has a crucial role with respect to femoral rollback, which imparts added efficiency to the extensor mechanism. PCL retention is a more biologically preserving operative intervention than PS-TKA.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 21 - 21
1 May 2014
Berend K
Full Access

Anterior supine intermuscular total hip arthroplasty (ASI-THA) has emerged as a muscle sparing, less-invasive procedure. The anterior interval is both intermuscular and internervous, providing the advantages of little or no muscle dissection, and a true minimally invasive alternative. It is versatile, with reported use expanding beyond the primary realm to revision and resurfacing THA as well as treatment of acute fracture in elderly patients, who due to their diminished regenerative capacity may benefit more from the muscle-sparing nature of the anterior approach. The ASI approach involves the use of a standard radiolucent operative table with the table extender at the foot of the bed and the patient supine. Fluoroscopy is used in every case. A table-mounted femur elevator is utilised to facilitate femoral preparation.

A retrospective review identified 824 patients undergoing 934 consecutive primary ASI-THA performed between January 2007 and December 2010. Age averaged 63.2 years (27–92), BMI averaged 29.9 kg/m2 (16.9–59.2). Gender was 49% males and 51% females. Stem types were short in 82% and standard length in 18%. Follow-up averaged 23.1 months (1–73). Operative time averaged 63.1 minutes (29–143). Blood loss averaged 145.3 minutes (25–1000). Transfusion rate was 3.3% (30 of 914) in single procedures and 80% (8 of 10) in simultaneous bilateral procedures. Length of stay averaged 1.7 days (1–12). Intraoperatively there were 3 calcar cracks and 1 canal perforation treated with cerclage cables. There were 6 wound complications requiring debridement. Four hips had significant lateral femoral cutaneous nerve parathesias not resolved at 12 months. One femoral nerve palsy occurred. At up to 73 months follow-up there have been 21 revisions (2.2%): 2 infection, 1 malpositioned cup corrected same day, 5 metal complications, 2 dislocations, 2 loose cups with one requiring concomitant stem revision secondary to inability to disarticulate trunnion, 1 femoral subsidence and 8 periprosthetic femoral fractures.

Primary THA can be safely performed utilising this muscle-sparing approach. We did not see an alarmingly high rate of complications. Instead, rapid recovery and quick return to function were observed. ASI-THA appears to be safe. The recovery advantage utilising this surgical approach is irrefutable. There are complications, most notably periprosthetic femur fracture. The rate, however, appears to be low and decreases with increased experience. There is no need for a special operative or fracture table to perform the procedure. Whether the complication rate is higher with the use of these expensive devices is unknown, but our results demonstrate a 2.2% reoperation rate with the use of the ASI approach performed on a standard OR table. Continued refinement of the technical aspects of ASI-THA may lessen the complication rate.