Modularity allows surgeons to use femoral heads of various materials, diameters and offsets to achieve the best possible outcome, nevertheless the fretting corrosion behaviour of modular junctions can be significantly affected. The aim of this study was to assess physiological friction moment and lubrication ratio in order to compare various tribological materials against different bearing sizes. This data is important as lubrication will affect the friction, wear and torque generated which may lead directly to the production of debris or to enhanced corrosion at modular junctions. Hip joints were tested in lubricant condition on a hip simulator following the ISO14242-3 configuration. Three samples for each combinations were examined: 1) 36mm metal-on-metal made in CoCrMo 2) 36mm ceramic-on-ceramic made in ZTA 3) 58mm resurfacing metal-on-metal made in CoCrMo 4) 57mm resurfacing ceramic-on-ceramic made in ZTA. Preconditioning and dynamic loading steps were spaced out by rest periods (Fig. 1) and the entire series was repeated three times for each combination. Strains were measured on the Ti6Al4V neck's femoral stem with three couples of biaxial strain gauges and were converted into friction moments by means of analytical formulas. Mean maximum moment M and lubrication ratio λ were calculated. MSTART-UP and MTURN-OFF were respectively the first three and last three peak moment sampled for each consecutive step.Introduction
Materials and methods