Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 42 - 42
24 Nov 2023
Tessier E d'Epenoux Louise R Lartigue M Guerin F Plouzeau-Jayle C Tandé D Chenouard R Bemer P Corvec S
Full Access

Abstract Background

The treatment of bone and joint infections (BJI) involving multi-drug resistant bacteria remains a challenge. MDR Staphylococcus epidermidis (MDRSE) clones, resistant to methicillin, clindamycin, levofloxacin, rifampicin and even linezolid, have been reported worldwide. The interest of delafloxacin (DFX), theoretically active on MRSA, remains to be evaluated with respect to MDRSE.

Purpose

Our objective was to evaluate during a retrospective multicenter study the DFX minimal inhibitory concentrations (MICs) and compare its efficacy between ofloxacin-susceptible and ofloxacin-resistant S. epidermidis clinical strains involved in BJI.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 66 - 66
24 Nov 2023
d'Epenoux Louise R Robert M Caillon H Crenn V Dejoie T Lecomte R Tessier E Corvec S Bemer P
Full Access

Background

The diagnosis of periprosthetic joint infection (PJI) remains a challenge in clinical practice and the analysis of synovial fluid (SF) is a useful diagnostic tool. Recently, two synovial biomarkers (leukocyte esterase (LE) strip test, alpha-defensin (AD)) have been introduced into the MSIS (MusculoSkeletal Infection Society) algorithm for the diagnosis of PJI. AD, although promising with high sensitivity and specificity, remains expensive. Calprotectin is another protein released upon activation of articular neutrophils. The determination of calprotectin and joint CRP is feasible in a routine laboratory practice with low cost.

Purpose

Our objective was to evaluate different synovial biomarkers (calprotectin, LE, CRP) for the diagnosis of PJI.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 4 - 4
1 Oct 2022
Dupieux C Dubois A Loiez C Marchandin H Lavigne JP Munier C Chanard E Gazzano V Courboulès C Roux A Tessier E Corvec S Bemer P Laurent F Roussel-Gaillard T
Full Access

Aim

Bone and joint infections (BJIs) are serious infections requiring early optimized antimicrobial therapy. BJIs can be polymicrobial or caused by fastidious bacteria, and the patient may have received antibiotics prior to sampling, which may decrease the sensitivity of culture-based diagnosis. Furthermore, culture-based diagnosis can take up to 14 days. Molecular approaches can be useful to overcome these concerns. The BioFire® system performs syndromic multiplex PCR in 1 hour, with only a few minutes of sample preparation. The BioFire® Joint Infection (JI) panel (BF-JI), recently FDA-cleared, detects both Gram-positive (n=15) and Gram-negative bacteria (n=14), Candida, and eight antibiotic resistance genes directly from synovial fluids. The aim of this study was to evaluate its performance in acute JIs in real-life conditions.

Method

BF-JI was performed on synovial fluid from patients with clinical suspicion of acute JI, either septic arthritis or periprosthetic JI, in 6 French centers. The results of BF-JI were compared with the results of culture of synovial fluid and other concomitantly collected osteoarticular samples obtained in routine testing in the clinical microbiology laboratory.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 69 - 69
1 Dec 2019
Grossi O Lamberet R Touchais S Corvec S Bemer P
Full Access

Aim

Cutibacterium acnes is a significant cause of late-onset spinal implant infection (SII). In addition, usual preoperative prophylactic measures may be insufficient to prevent C. acnes operating site colonisation and infection, as demonstrated for prosthetic shoulder surgery. However, little information is available regarding risk factors for SII due to this microorganism. The aims of this study were to determine the characteristics of and risk factors for C. acnes SII.

Method

we conducted a retrospective unmatched case-control study including all adult patients treated for mono and polymicrobial C. acnes SII during 2010–2015. Controls were randomly selected among patients diagnosed with SII due to other microorganisms during the same period.


Aim

Cutibacterium acnes (CA) is one of the crucial actors in spine instrumentation or shoulder prosthesis. Its population is subdivided into 6 major phylotypes: IA1, IA2, IB, IC, II and III. Recent methods for discriminating subpopulations within CA phylotypes highlight the predominance of SLST types H1 to 6 or K1 to 20 in bone and joint infection (BJI). The impact of their ability to produce a biofilm during the development of the infection (with resistance / tolerance to antibiotics used for treatment) remains little studied.

Method

The purpose of this study was to determine whether the ability to establish a biofilm varied according to the different subtypes of clinical strains of CA previously characterized and involved in BJI (hip, knee and shoulder prosthesis). The BioFilm ring test (BioFilm Control®) method with index determination, called BFI (BioFilm Index) inversely proportional to the level of biofilm production was used (BFI = 0.00 indicates a high production of biofilm versus BFI = 20.00 indicates zero production). The BFI was determined after 3 h (T3) and 6 h (T6) incubation. The strains used came from patients, 5 belonging to the IA1 phylotype (SLST A1 and D1 types) and 4 to different phylotypes (IA2, IB, II and III).