The field of nanoparticle related research for the diagnosis and therapy of diseases evolves rapidly. Magnetic nanoparticles in combination with magnetizable implant materials for the treatment of implant related infections present a possible implementation in orthopedics. Magnetic nanoporous silica nanoparticles (MNPSNPs) were developed and equipped with fluorescent dyes.
After the implantation of endoprotheses or osteosynthesis devices, implant-related infections are one of the major challenges. The surface of implants offers optimal conditions for the formation of a biofilm. Effective carrier systems for the delivery of adequate therapeutics would reduce the concentrations needed for successful treatment and improve cure rates. In cancer diagnosis and therapy, magnetic nanoparticles are concentrated in the target area by an external magnetic field. For orthopaedic applications, Fluorescein-isothiocyanate (FITC) was covalently attached to MNPSNPs. For the The solution in the remaining tube contained no detectable MNPs while the concentration in the vicinity of the platelet was 150 µg/ml. The mouse showed no clinical adverse effects. The CLSM examination revealed a considerable accumulation of the MNPs at the implant surface. MRI could show neither accumulated MNPs nor changes of organ structure. The loading capacity of the MNPs for enrofloxacin was approximately 95 µg/mg. A burst release of nearly a third of the loaded antibiotic occurred within the first 6 hours followed by a further steady release. Loading and release of enrofloxacin showed appropriate results. For future studies antibiotics like rifampicin or vancomycin will be implemented. This first in vivo trial demonstrated an implant-directed targeting of the MNPs and successfully transferred the principle into an in vivo model so that a main study with statistically significant animal numbers has started including histological examinations.Conclusion
Our aim was to examine the potential of autologous perichondral tissue to form a meniscal replacement. In 18 mature sheep we performed a complete medial meniscectomy. The animals were then divided into two groups: 12 had a meniscal replacement using strips of autologous perichondral tissue explanted from the lower rib (group G) and six (group C) served as a control group without a meniscal replacement. In all animals restriction from weight-bearing was achieved by means of transection and partial resection of tendo Achillis. Six animals (four from group G and two from group C) were each killed at 3, 6 and 12 months. The grafts and the underlying articular cartilage were removed and studied by gross macroscopic examination, light microscopy, SEM, polarised light examination, and by biomechanical tests. In all the transplanted animals a new perichondral meniscus developed. After three months the transplants resembled normal menisci in size and thickness, while in the control animals only small rims of spontaneously grown tissue were seen. Microscopically, the perichondral menisci showed a normal orientation of collagen fibres and normal cellular characteristics, but in the central region, areas of calcification disturbed the regular tissue differentiation. Healing tissue in control animals lacked the normal fibre orientation and cellularity. SEM of perichondral menisci showed surface characteristics similar to those of normal sheep menisci without fissures and lacerations; the control specimens had these defects. The femoral and tibial cartilage in contact with the new menisci had normal surface characteristics apart from one animal with slight surface irregularities. Control animals showed superficial lesions after three months which increased at six to 12 months postoperatively. Microangiography of the newly grown tissue demonstrated a less intense vascularisation after three months when compared with normal menisci. The failure stress and tensile modulus of perichondral menisci were significantly lower than those of normal contralateral menisci, and spontaneously regenerated tissue in meniscectomised animals had even lower values. There were no significant differences in values between newly grown perichondral menisci and spontaneously grown tissue.