Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 65 - 65
23 Jun 2023
Koller T Reisinger C Beck M
Full Access

To quantify the acetabular coverage of the femoral head, Lequesne's vertical-center-anterior edge (VCA) angle is used on the false profile view. Lateral coverage is determined by Wiberg's lateral-center-edge (LCE) angle on an ap pelvic view. The delimitation of the weightbearing area is defined by the end of the subchondral sclerosis line for both views. To our knowledge the exact anatomic location of the points used for measurement on the acetabular rim are not known.

Six hips from three cadaver pelvises (3 male and 3 female) were investigated. The anterior and lateral points of interested were identified radiographically using fluoroscopy and marked with 1mm ceramic bullets. Standard false profile views and ap pelvic views in neutral inclination and rotation were taken to check the correct location of the ceramic bullets. A CT of each pelvis was made to locate the ceramic bullets and to define the exact anatomic location of the measurement points on the o'clock position. 6 o‘clock was defined as the midpoint between anteroinferior and the posteroinferior rim edges. Values were normalized for a right hip.

The mean clockface location for the VCA was 1:33 (range, 1:15 to 1:40) and for the LCE 0:38 (range, 0:20 to 0:50).

The LCEA is slightly anterior to the 12 o'clock position and remains useful to quantify the lateral coverage. Surprisingly, the point used for measuring the VCA is only about 30° (1h) anterior of the point used for measuring the LCEA. Its value for determining anterior cover has to be questioned. The discrepancy to other studies in the literature is because this study identifies and measures the end of the weight bearing zone, and not the border of the bony acetabulum.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1662 - 1668
1 Nov 2021
Bhanushali A Chimutengwende-Gordon M Beck M Callary SA Costi K Howie DW Solomon LB

Aims

The aims of this study were to compare clinically relevant measurements of hip dysplasia on radiographs taken in the supine and standing position, and to compare Hip2Norm software and Picture Archiving and Communication System (PACS)-derived digital radiological measurements.

Methods

Preoperative supine and standing radiographs of 36 consecutive patients (43 hips) who underwent periacetabular osteotomy surgery were retrospectively analyzed from a single-centre, two-surgeon cohort. Anterior coverage (AC), posterior coverage (PC), lateral centre-edge angle (LCEA), acetabular inclination (AI), sharp angle (SA), pelvic tilt (PT), retroversion index (RI), femoroepiphyseal acetabular roof (FEAR) index, femoroepiphyseal horizontal angle (FEHA), leg length discrepancy (LLD), and pelvic obliquity (PO) were analyzed using both Hip2Norm software and PACS-derived measurements where applicable.


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1578 - 1584
1 Dec 2019
Batailler C Weidner J Wyatt M Pfluger D Beck M

Aims

A borderline dysplastic hip can behave as either stable or unstable and this makes surgical decision making challenging. While an unstable hip may be best treated by acetabular reorientation, stable hips can be treated arthroscopically. Several imaging parameters can help to identify the appropriate treatment, including the Femoro-Epiphyseal Acetabular Roof (FEAR) index, measured on plain radiographs. The aim of this study was to assess the reliability and the sensitivity of FEAR index on MRI compared with its radiological measurement.

Patients and Methods

The technique of measuring the FEAR index on MRI was defined and its reliability validated. A retrospective study assessed three groups of 20 patients: an unstable group of ‘borderline dysplastic hips’ with lateral centre edge angle (LCEA) less than 25° treated successfully by periacetabular osteotomy; a stable group of ‘borderline dysplastic hips’ with LCEA less than 25° treated successfully by impingement surgery; and an asymptomatic control group with LCEA between 25° and 35°. The following measurements were performed on both standardized radiographs and on MRI: LCEA, acetabular index, femoral anteversion, and FEAR index.


The Bone & Joint Journal
Vol. 100-B, Issue 6 | Pages 712 - 719
1 Jun 2018
Batailler C Weidner J Wyatt M Dalmay F Beck M

Aims

The primary aim of this study was to define and quantify three new measurements to indicate the position of the greater trochanter. Secondary aims were to define ‘functional antetorsion’ as it relates to abductor function in populations both with and without torsional abnormality.

Patients and Methods

Three new measurements, functional antetorsion, posterior tilt, and posterior translation of the greater trochanter, were assessed from 61 CT scans of cadaveric femurs, and their reliability determined. These measurements and their relationships were also evaluated in three groups of patients: a control group (n = 22), a ‘high-antetorsion’ group (n = 22) and a ‘low-antetorsion’ group (n = 10).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 6 - 6
1 Jun 2017
Wyatt M Weidner J Pfluger D Beck M
Full Access

The definition of osseous instability in radiographic borderline dysplastic hips is difficult. A reliable radiographic tool that aids decision-making specifically, a tool that might be associated with instability-therefore would be very helpful for this group of patients. The aims of this study were:

(1) To compare a new radiographic measurement, which we call the Femoro-Epiphyseal Acetabular Roof (FEAR) index, with the lateral centre-edge angle (LCEA) and acetabular index (AI), with respect to intra- and interobserver reliability; (2) to correlate AI, neck-shaft angle, LCEA, iliocapsularis volume, femoral antetorsion, and FEAR index with the surgical treatment received instable and unstable borderline dysplastic hips; and (3) to assess whether the FEAR index is associated clinical instability in borderline dysplastic hips.

We defined and validated the FEAR index in 10 standardized radiographs of asymptomatic controls using two blinded independent observers. Interrater and intrarater coefficients were calculated, supplemented by Bland-Altman plots. We compared its reliability with LCEA and AI. We performed a case-control study using standardized radiographs of 39 surgically treated symptomatic borderline radiographically dysplastic hips and 20 age-matched controls with asymptomatic hips (a 2:1 ratio), the latter were patients attending our institution for trauma unrelated to their hips but who had standardized pelvic radiographs between January 1, 2016 and March 1, 2016.

Patient demographics were assessed using univariate Wilcoxon two-sample tests. There was no difference in mean age (overall: 31.5 ± 11.8 years [95% CI, 27.7–35.4 years]; stable borderline group: mean, 32.1± 13.3 years [95%CI, 25.5–38.7 years]; unstable borderline group: mean, 31.1 ± 10.7 years [95% CI, 26.2–35.9 years]; p = 0.96) among study groups. Treatment received was either a periacetabular osteotomy (if the hip was unstable) or, for patients with femoroacetabular impingement, either an open or arthroscopic femoroacetabular impingement procedure. The association of received treatment categories with the variables AI, neck-shaft angle, LCEA, iliocapsularis volume, femoral antetorsion, and FEAR index were evaluated first using Wilcoxon two-sample tests (two-sided) followed by stepwise multiple logistic regression analysis to identify the potential associated variables in a combined setting. Sensitivity, specificity, and receiver operator curves were calculated. The primary endpoint was the association between the FEAR index and instability, which we defined as migration of the femoral head either already visible on conventional radiographs or recentering of the head on AP abduction views, a break of Shenton's line, or the appearance of a crescent-shaped accumulation of gadolinium in the posteroinferior joint space at MR arthrography.

The FEAR index showed excellent intra- and interobserver reliability, superior to the AI and LCEA. The FEAR index was lower in the stable borderline group (mean, −2.1 ± 8.4; 95% CI, −6.3 to 2.0) compared with the unstable borderline group (mean, 13.3 ± 15.2; 95% CI, 6.2–20.4) (p < 0.001) and had the highest association with treatment received. A FEAR index less than 5° had a 79% probability of correctly assigning hips as stable and unstable, respectively (sensitivity 78%; specificity 80%).

A painful hip with a LCEA of 25° or less and FEAR index less than 5° is likely to be stable, and in such a situation, the diagnostic focus might more productively be directed toward femoroacetabular impingement.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 34 - 34
1 Nov 2015
Welsh F Helmy N De Gast A Beck M French G Baines J
Full Access

Introduction

Obesity is known to influence surgical risk in total hip replacement (THR), with increased Body Mass Index (BMI) leading to elevated risk of complications and poorer outcome scores. Using a multinational trial data of a single implant, we assess the impact of BMI and regional variations on Harris Hip scores (HHS).

Method

We assessed BMI in 11 regional centres and associations with HHS at one year. Data were collected from 744 patients prospectively from 11 centres in the UK, Germany, Switzerland, Austria, New Zealand and Netherlands as part of a multicentre outcome trial. All Arthroplasties used RM Pressfit vitamys components (Mathys, Switzerland). Demographic, operative data and HHS were analysed with General Linear Model Anova, Minitab 16 (Minitab Inc, Pennsylvania).


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 3 | Pages 358 - 363
1 Apr 2000
Beck M Sledge JB Gautier E Dora CF Ganz R

In order to investigate the functional anatomy of gluteus minimus we dissected 16 hips in fresh cadavers. The muscle originates from the external aspect of the ilium, between the anterior and inferior gluteal lines, and also at the sciatic notch from the inside of the pelvis where it protects the superior gluteal nerve and artery. It inserts anterosuperiorly into the capsule of the hip and continues to its main insertion on the greater trochanter.

Based on these anatomical findings, a model was developed using plastic bones. A study of its mechanics showed that gluteus minimus acts as a flexor, an abductor and an internal or external rotator, depending on the position of the femur and which part of the muscle is active. It follows that one of its functions is to stabilise the head of the femur in the acetabulum by tightening the capsule and applying pressure on the head. Careful preservation or reattachment of the tendon of gluteus minimus during surgery on the hip is strongly recommended.