Preclinical data showed poly(methyl methacrylate) (PMMA) loaded with microsilver to be effective against a variety of bacteria. The purpose of this study was to assess patient safety of PMMA spacers with microsilver in prosthetic hip infections in a prospective cohort study. A total of 12 patients with prosthetic hip infections were included for a three-stage revision procedure. All patients received either a gentamicin-PMMA spacer (80 g to 160 g PMMA depending on hip joint dimension) with additional loading of 1% (w/w) of microsilver (0.8 g to 1.6 g per spacer) at surgery 1 followed by a gentamicin-PMMA spacer without microsilver at surgery 2 or vice versa. Implantation of the revision prosthesis was carried out at surgery 3.Objectives
Methods
Infections in total joint arthroplasty, particularly with multiresistant bacteria, are a serious problem. A new nanoparticulate silver cement had previously shown good biocompatibility combined with good in vitro antimicrobial activity against multiresistant bacteria. The purpose of the current study was to evaluate the antibacterial activity of nanoparticulate silver cement against biofilm-building methicillin-resistant S. aureus (MRSA) in a rabbit model and to compare it to that of gentamicin-loaded cement. Gentamicin cement or nanoparticulate silver bone cement was injected into the proximal half of one femur in 10 animals, respectively. Before hardening of the cement 107 or 108 colony forming units of MRSA with high gentamicin resistance were inoculated at the cement bone interface in 5 rabbits of each group. The animals were euthanized after 14 days and both the cement adjacent bone and the cement itself were studied using microbiological and histological methods. Infection was defined as positive culture growth from the bone and/or cement samples. Infections rates were 100% for the gentamicin group (10 of 10 animals had infection) and 30% for the NanoSilver group (3 of 10 animals). Thus, nanoparticulate silver bone cement significantly reduced infection rates by 70%. Nanoparticulate silver cement exhibited good antimicrobial activity in the prophylaxis of cement-related infections with MRSA and is therefore a promising alternative in total joint arthroplasty.