header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 35 - 35
1 Mar 2021
Ng G Bankes M Daou HE Beaulé P Cobb J Jeffers J
Full Access

Abstract

OBJECTIVES

Although surgical periacetabular osteotomy (PAO) for hip dysplasia aims to optimise acetabular coverage and restore hip function, it is unclear how surgery affects capsular mechanics and joint stability. The purpose was to examine how the reoriented acetabular coverage affects capsular mechanics and joint stability in dysplastic hips.

METHODS

Twelve cadaveric dysplastic hips (n = 12) were denuded to the capsule and mounted onto a robotic tester. The robot positioned each hip in multiple flexion angles (Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°) and performed internal-external rotations and abduction-adduction to 5 Nm in each rotational or planar direction. Each hip underwent a PAO, preserving the capsule, and was retested postoperatively in the robot. Paired sample t-tests compared the range of motion before and after PAO surgery (CI = 95%).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 117 - 117
1 Nov 2018
Catelli D Ng K Kowalski E Beaulé P Lamontagne M
Full Access

Cam-type femoroacetabular impingement (FAI) is a common cause for athletic hip injury and early hip osteoarthritis. Although corrective cam FAI surgery can improve patient reported outcome measures (PROMs), it is not clear how surgery affects muscle forces and hip joint loading. Surgery for FAI may redistribute muscle forces and contact forces at the hip joint during routine activities. The purpose of this study was to examine the muscle contributions and hip contact forces during gait in patients prior and after two years of undergoing surgery for cam FAI. Kinematics and kinetics were recorded in 11 patients with symptomatic cam FAI as they completed a gait task. Muscle and hip contact forces during the stance phase were estimated using musculoskeletal modelling and static optimization in OpenSim. All patients reported improvements in PROMs. Post-operatively, patients showed reduced forces in the long head of the biceps femoris at ipsilateral foot-strike and in the rectus femoris at the contralateral foot-strike. The reduced muscle forces decreased sagittal hip moment but did not change hip contact forces. This was the first study to evaluate hip muscle and contact forces in FAI patients post-operatively. Although hip contact forces are not altered following surgery, muscle forces are decreased even after two years. These findings can provide guidance in optimizing recovery protocols after FAI surgery to improve hip flexor and extensor muscle forces.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 115 - 115
1 Nov 2018
Beaulé P
Full Access

Total hip arthroplasty (THA) is one of the most successful surgery. However, patients' expectations have increased over the last two decades in regards to hip function after joint replacement, the patients assume to return their daily and sport activities without major limitations. This presentation will examine the effect of surgical approaches and implant designs as well as rehabilitation protocol on the clinical and biomechanical outcomes after THA. The new implant designs for THA aim to improve joint function whereas the surgical approaches intend to reduce muscle damage to regain muscle strength. One important determinant measured from gait analysis is the hip abduction moment as the abductors play a key role in stabilizing the pelvis in the frontal plane, particularly in phases of transition, such as the single leg stance in walking or stair climbing. This showed that muscle strength needs to be preserved. To minimize the risk of hip joint instability, a strong focus of implant development has been carried out. To illustrate this important concept within the context of gait analysis, I will present two studies that examine the influence of surgical approach and biomechanical reconstruction; and the second, is a prospective RCT comparing a dual mobility implant to a standard total hip replacement.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 51 - 51
1 Jan 2017
Rivière C Beaulé P Lazennec J Hardijzer A Auvinet E Cobb J Muirhead-Allwood S
Full Access

In approximately 20 years, surgical treatment of femoro-acetabular impingement (FAI) has been widely accepted, and its indications refined. However, the current approach of the disease prevents a good understanding of its pathophysiology, and numerous uncertainties remain. Comprehending inter-individual spine-hip relations (SHRs) can further clarify the pathophysiology of impingement, and explain occasional surprising mismatch between clinical assessment and imaging or intraoperative findings. The rational is simple, the more the spino-pelvic complex is mobile (sagittal ROM) and the more the hip is protected against hip impingement but would probably become at risk of spine-hip syndrome if the spino-pelvic complex comes to degenerate. Grouping patients based on their spine-hip relation can help predict and diagnose hip impingement, and assess the relevance of physiotherapy. With the proposed new classification of FAIs, every patient can be classified in homogeneous groups of complexity of treatment. The primary aim of this paper is to raise awareness of the potential impact that the spine-hip relations have on the hip impingement disease. Two new classifications are proposed, for FAIs and SHRs that can help surgeons in their comprehension, and could be beneficial in clinical and research areas.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 4 - 4
1 Jan 2017
Lamontagne M Kowalski E Catelli D Beaulé P
Full Access

Dual mobility (DM) bearing implants reduce the incidence of dislocation following total hip arthroplasty (THA) and as such they are used for the treatment of hip instability in both primary and revision cases. The aim of this study was to compare lower limb muscle activity of patients who underwent a total hip arthroplasty (THA) with a dual mobility (DM) or a common cup (CC) bearing compared to healthy controls (CON) during a sit to stand task.

A total of 21 patients (12 DM, 9 CC) and 12 CON were recruited from the local Hospital. The patients who volunteered for the study were randomly assigned to either a DM or a CC cementless THA after receiving informed consent. All surgeries were performed by the same surgeon using the direct anterior approach. Participants underwent electromyography (EMG) and motion analysis while completing a sit-to-stand task. Portable wireless surface EMG probes were placed on the vastus lateralis, rectus femoris, biceps femoris, semitendinosus (ST), gluteus medius and tensor fasciae latae muscles of the affected limb in the surgical groups and the dominant limb in the CON group. Motion capture was used to record lower limb kinematics and kinetics. Muscle strength was recorded using a hand-held dynamometer during maximal voluntary isometric contraction (MVIC) testing. Peak linear envelope (peakLE) and total muscle activity (iEMG) were extrapolated and normalized to the MVIC and time cycle for the sit to stand task. Using iEMG, quadriceps-hamstrings muscle co-activation index was calculated for the task. Nonparametric Kruskal Wallace ANOVA tests and Wilcoxon rank sum tests were used to identify where significant (p < 0.05) differences occurred.

The DM group had greater iEMG of the ST muscle compared to the CC (p=0.045) and the CON (p=0.015) groups. The CC group had lower iEMG for hamstring muscles compared to the DM (p=0.041) group. The DM group showed lower quadriceps-hamstrings co-activation index compared to the CON group and it approached significance (p=0.054). The CC group had greater anterior pelvis tilt compared to both DM (p=0.043) and the CON (p=0.047) groups. The DM also had larger knee varus angles and less knee internal rotation compared to both groups, however this never reached significance. No significant differences in muscle strength existed between the groups.

Higher ST muscle activity in the DM group is explained by the reduction in internal rotation at the knee joint as the ST muscle was more active to resist the varus forces during the sit-to-stand task. Reduced quadriceps activity in the CC group is explained by increased pelvic anterior tilt as this would shorten the moment arm and muscle length in the quadriceps, ultimately reducing quadriceps muscle activity. The reduced co-activation between quadriceps and hamstrings activity in the DM group compared to the CC and CON groups is related to better hip function and stability. Combining lower co-activation and larger range of motion for the DM group without impingement, this implant seems to offer better prevention against THA subluxation and less wear of the implant.