header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 457 - 457
1 Oct 2006
McAfee P Cunningham B Hu N Beatson H Tortolani P Pimenta L
Full Access

Introduction This is the largest analysis to date of any retrieved porous ingrowth disk replacement prostheses. In distinction to prior reports of retrieved implants which were conducted like “airplane crash” type pseudoanalyses, in this series the position of the components was known in vivo prior to implant removal. The digitized radiographs were used to determine if the components were in ideal, suboptimal, or poor position. There were thirty cervical disk replacements and thirty-eight lumbar disk replacements which comprised the basis of this analysis.

Methods Quantitative histomorphometry, microradiography, and histology were performed on all 68 vertebral endplates. Scanning electron microscopy was performed on ten. All 24 caprine model, 34 non-human primates, and 10 human explants with titanium calcium phosphate porous ingrowth surface were manufactured by the same vendor, D.O.T., which provides the same porous ingrowth coating for several FDA approved total hip replacements. Group I – Ideal placement, was defined as Charité or PCM Artificial Disc replacement within 3 mm of exact central axis in both the coronal planes and mid-sagittal planes (2 mm posterior to the midpoint of the vertebral body in the sagittal plane for Charité only).The endplates of the prosthesis also had to be within 5 degrees of angulation of the bony end-plate or within 5 degrees of angulation of the perpendicular axis of the vertebral body. Group II – Suboptimal placement, was defined as Charité or PCM Artificial Disc placement from 3 mm to 5 mm from exact central placement in at least one axis In addition the prosthetic endplate had to be from 5 degrees to 10 degrees of perpendicular vertebral body orientation. Group III – Poor placement, was defined as greater than 5 mm from exact central placement in at least one axis or the endplate was greater than 10 degrees off angle. Three separate observers judged the measurements of axes and made a determination of prosthesis placement after correction for magnification error.

Results The mean length of time in biologic conditions to monitor reabsorption and incorporation of the ingrowth surface was a mean of 10.5 months (range 6 to 33 months). This is the first study finding a correlation between the position of the components and amount of successful bony ingrowth. A representative group was: Ideal 50.9 +/− 13 % ingrowth, Suboptimal placement, 49.3 +/−18 % ingrowth, and Poor, 33.0 +/− 29.2 % ingrowth. There was trend but not statistically significant (F= 1.78, p = .186). The mean ingrowth of prostheses in poor and suboptimal position (defined by axis off by 3mm in either AP or Lateral plane) was 43.2 %. Whereas the mean ingrowth of prostheses inserted in “ideal position” within 3 mm of the optimal prosthesis axis in both planes was 46.4 %. The definition of successful biologic ingrowth in the extremities for total joint replacement is porous ingrowth over 30 %, which was achieved in 58 / 68 (85.3 %) of vertebral endplates.

Discussion The porous ingrowth TiCaP bioactive technology permits osseointegration despite non-ideal positioning. The surgeon’s technical shortcomings to place the prosthesis in ideal position were more than compensated for as 85.3 % of the components were successfully ingrown and biologically fixed to the vertebral trabeculae at the time of explantation. There were no cases of osteolysis or biomaterial failure encountered in this retrieval study.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 406 - 406
1 Sep 2005
Cunningham B Hu N Beatson H Serhan H Sefter J McAfee P
Full Access

Introduction This in-vitro biomechanical study was undertaken to compare the multi-directional flexibility kinematics of single versus multi-level lumbar Charité reconstructions and determine the optimal biomechanical method for surgical revision – posterior instrumentation alone or circumferential spinal arthrodesis.

Methods A total of seven human cadaveric lumbosacral spines (L1 to Sacrum) were utilized in this investigation and biomechanically evaluated under the following L4-L5 reconstruction conditions: 1) Intact Spine; 2) Diskectomy Alone, 3) Charité, 4) Charité + Pedicle Screws, 5) Two Level Charité (L4-S1), 6) Two Level Charité + Pedicle Screws (L4-S1), 7) Charité L4-L5 with Pedicle Screws and Femoral Ring Allograft (L5-S1) and 8) Pedicle Screws and Femoral Ring Allograft (L4-S1). Multi-directional flexibility testing utilized the Panjabi Hybrid Testing protocol, which includes pure moments for the intact condition with the overall spinal motion replicated under displacement control for subsequent reconstructions. Hence, changes in adjacent level kinematics can be obtained compared to pure moment testing strategies. Unconstrained intact moments of ±7Nm were used for axial rotation, flexion-extension and lateral bending testing, with quantification of the operative and adjacent level range of motion (ROM) and neutral zone (NZ). All data was normalized to the intact spine condition.

Results In axial rotation, single and two level Charité reconstructions produced significantly more motion than pedicle screw constructs combined with the Charité or femoral ring allograft (p< 0.05). There were no differences between the Charité augmented with pedicle screws or pedicle screws with femoral ring allograft (p> 0.05). Similar trends were observed under flexion-extension and lateral bending conditions with the Charité reconstructions demonstrating no significant differences compared to the intact spine (p> 0.05). However, the Charité combined with pedicle screws or pedicle screws with femoral ring allograft significantly reduced motion at the operative level compared to the Charité reconstruction (p< 0.05). The most pronounced changes in adjacent level kinematics were observed at the inferior level. The addition of pedicle screw fixation, in all cases, increased segmental motion at the inferior adjacent level (L5-S1) compared to the intact and Charité reconstruction groups (p< 0.05).

Discussion Single and two level total disc arthroplasty using the Charité device preserved segmental motion at the operative and adjacent levels compared to pedicle screw stabilization constructs. In terms of revision strategies, posterior pedicle screw reconstruction combined with an existing Charité is not statistically different from pedicle screws combined with femoral ring allograft. As we enter an era of total disc replacement and the impending necessity for surgical revision, the current study provides a biomechanical basis for posterior re-stabilization alone in lieu of combined anteroposterior revision.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 399 - 400
1 Sep 2005
Cunningham WB Berven S Nianbin H Beatson H DeDeyne P Sefter J McAfee P
Full Access

Introduction Using a non-human primate model, the purpose of this in-vivo investigation was to evaluate the efficacy of porcine small intestine submucosa (PSIS) for anterior longitudinal ligament replacement and as an anti-adhesion barrier following total disc arthroplasty. Success criteria were based on post-mortem vascular adhesion tenacity scores, biomechanical, histological and immunohistochemical analyses.

Methods A total of ten mature male baboons (Papio cynocephalus) were included in the current study and followed for a period of six-months post-operatively. Each animal underwent an anterior transperitoneal approach followed by a total disc arthroplasty procedure at L5-L6 using one of the following treatments: (1) Charité Disc Prosthesis alone (n=5) or (2) Charité Disc Prosthesis + PSIS (n=5). Following anterior annular and anterior longitudinal ligament (ALL) resection, complete diskectomy and endplate decortication, the Charité Device (Size 1) was implanted according to the manufacturer’s specifications. The PSIS material (40mm x 30mm width) was secured across the operative site using surgical bone staples with the abluminal side oriented towards the bone. Post-mortem analysis included vascular adhesion tenacity scores (0–5), histopathology of the operative site ALL, non-destructive biomechanical testing and histomorphometry.

Results All animals survived the operative procedure and post-operative interval without significant intra- or peri-operative complication. Vascular adhesion tenacity scores were markedly lower for the PSIS treatments (14/25) versus the Charité alone (20/25) (p=0.057). Gross histopathological analysis demonstrated disorganized collagenous matrix anteriorly spanning the disc arthroplasty site in 4/5 (80%) of the PSIS specimens compared to 2/5 (40%) for the Charité alone treatments. Plain film radiographic analysis showed no lucencies or loosening of any prosthetic vertebral endplate. Multi-directional flexibility testing demonstrated increased range of motion for both treatment groups under axial rotation and decreased motion in lateral bending when compared to the intact spine condition (p< 0.05). The neutral zone values were significantly higher in axial rotation and flexion extension for the both treatments (p< 0.05), with no differences in lateral bending.

Discussion Using a non-human primate model, the current study investigated in-vivo response to PSIS following total disc arthroplasty. Surgical application of the PSIS appears to reduce great vessel adhesion and improve regeneration of collagenous tissues at the operative disc space. However, there were no differences in the operative segment range of motion or neutral zone when comparing the two treatments. The current study serves as a basic scientific basis for ongoing clinical investigations into the use and efficacy of PSIS material following total disc arthroplasty.