Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 31 - 31
1 Feb 2017
Jahani F Fisher J Barton D Brooks J Wilcox R Jones A
Full Access

Introduction

The performance of total hip replacement (THR) devices can be affected by the quality of the tissues surrounding the joint or the mismatch of the component centres during hip replacement surgery. Experimental studies have shown that these factors can cause the separation of the two components during walking cycle (dynamic separation) and the contact of the femoral head with the rim of the acetabular liner (edge loading), which can lead to increased wear and shortened implant lifespan1. There is a need for flexible pre-clinical testing tools which allow THR devices to be assessed under these adverse conditions. In this work, a novel dynamic finite element model was developed that is able to generate dynamic separation as it occurs during the gait cycle. In addition, the ability to interrogate contact mechanics and material strain under separation conditions provides a unique means of assessing the severity of edge loading. This study demonstrates these model capabilities for a range of simulated surgical translational mismatch values, for ceramic-on-polyethylene implants.

Methodology

The components of the THR were aligned and constrained as illustrated in Figure 1. CAD models of commercially available implant geometries were used (DePuy Synthes, Leeds, UK) modified for model simplicity by removing anti-rotation features.

The polyethylene cup liner was given elastic-plastic behaviour. An axial load following the Paul cycle pattern (5 repetitive cycles) with maximum of 3KN and swing phase load of 0.3KN, was applied through the cup holder. The effect of translational mismatch was implemented by using a spring element connected to the cup unit on the lateral side. The spring was compressed by a fixed amount to replicate a degree of medial-lateral mismatch of the components. The instantaneous resultant force vector dictated the dynamic sliding behaviour of the cup against the head. In this study, translational medial-lateral mismatch values of 1, 2, 3 and 4mm were used and the medial-lateral dynamic separation, contact pressure maps and plastic strain were recorded.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 72 - 73
1 Jan 2011
Tarsuslugil S Hanlon C O’Hara R Dunne N Buchanan F Orr J Barton D Wilcox R
Full Access

Introduction: Computational modelling of the spine offers a particularly difficult challenge to analysts due to its complex structure and high level of functionality. Previous studies [Wijayathunga, 2008; Jones, 2007] have shown that finite element (FE) predictions of vertebral stiffness are highly sensitive to the applied boundary conditions and therefore validation requires careful matching between the experimental and simulated situation. The aim of this study was to develop and experimentally validate specimen specific FE models of porcine vertebrae in order to accurately predict the stiffness of single vertebra specimens.

METHOD: Nine single vertebra specimens were excised from the thoracolumbar region of two porcine spines. The specimens were mounted between two parallel PMMA housings and each specimen was imaged using a micro computed tomography (μCT) system (μCT80; Scanco Medical, Switzerland). In order to accurately match the experimental conditions, a radio-opaque marker was positioned on the specimen housing at the point of load application. The vertebrae were separated into two groups: a development set (set 1) consisting of three specimens and a validation set (set 2) of six specimens. Specimens from set 1 were used to establish the optimum method of conversion from image greyscale, to element material properties. The models in set 2 were used to assess the accuracy of the stiffness predictions for each model. The vertebrae were tested in a materials testing machine (AGS-10kNG; Shimadzu Corp., Japan) under axial compression and the stiffness for each specimen was calculated. The μCT data was imported into an image processing package (Scan IP, Simpleware, UK). The software enabled the images to be segmented and the vertebra, cement housings and position of load application to be identified. The segmented images were down-sampled to 1mm voxels, enabling a FE mesh to be generated (Scan FE; Simpleware, UK) based on direct voxel to element conversion. The Young’s modulus of each bone element was assigned, based on the greyscale of the corresponding image voxel. The PMMA housing plates were assigned homogeneous material properties (E = 2.45 GPa). Abaqus CAE 6.8 (Simula, Providence, Rhode Island, USA) was used for the processing and post-processing of all the models.

Results: The mean experimental stiffness was 4321 N/ mm (standard deviation = 415 N/mm). The optimum conversion factor was calculated for set 1, which yielded a root mean squared (RMS) percentage error of 7.5% when compared with the experimental stiffness. Using this optimised scale factor, FE models of specimens from set 2 were created. The predicted stiffnesses for set 2 were compared to the corresponding experimental values and yielded an RMS error of 10.1%.

Conclusion: The results indicate that specimen specific models can provide good agreement with the corresponding experimental specimen stiffness. In addition, the method employed in this study proved robust enough to be applied to vertebral tissue obtained from different animals of the same species. This method will now be developed to assess treatments for traumatic spinal injuries.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 407 - 408
1 Oct 2006
Hall R Oakland R Wilcox R Barton D
Full Access

Introduction: Spinal cord injury (SCI) continues to challenge the healthcare and the adjunct social welfare systems. Significant advances have been made in our understanding of the pathological cascade following the initial insult. However, this has yet to be translated into clinically significant treatments and one possible reason for this is that little is known about the actual interaction between the cord and the spinal column at the moment of impact; a factor that is becoming increasingly recognised as important. Burst fractures are a common cause of SCI and are sufficiently well defined to allow significant advances to be made in developing laboratory models of the fracture process. Following on from these advances an in-vitro model of the interaction between the cord and burst fracture fragment was developed and used to perform preliminary experiments to establish those factors that are important in determining the extent of probable cord damage.

Methods: A rig was developed that reliably reproduced a range of fragment-cord impact scenarios previously observed in the development of a model of the burst fracture process. In summary, a simulated bone fragment of mass 7.2 g was fired, transversely, at explanted bovine cord (within 3 hours of slaughter) with a velocity of 2.5, 5.0 or 7.5 ms-1. The cords were mounted in a tensile testing machine using a novel clamping system and held at 8 % strain. A surrogate posterior longitudinal ligament (PLL) was included and simulated in three biomechanically relevant conditions: absent, 0 % strain and 14 % strain. The posterior elements were represented by an anatomically correct surrogate. The impacts were recorded by using either a high speed video camera (4500 frames/s) or a series of fine pressure transducers.

Results: The fragments were recorded to undergo the same occlusion profile as previously reported in the burst fracture model, except that the cord itself reduced the level of maximum occlusion possible. All tests displayed the fragment recoiling following maximum occlusion. The maximum occlusion and the time to this position were found to be significantly dependent on both the fragment velocity and the condition of the PLL. Similar results were observed for peak pressure. One surprising result was that maximum occlusion or time to this event did not change with or without the cord being encased in the dura mater; a structure that is thought to protect the cord from external impacts.

Discussion: The model developed here of the cord-column interaction for the burst fracture produced useful initial insights into the factors that affect the impact on the cord. The PLL has a significant role to play in both reducing the peak pressures and the spreading the energy imparted over a longer period. The model has several areas in which it could be improved and these include 1) the incorporation of the perfusion pressure which tends to hydraulically stiffen the cord and 2) the inclusion of the cerebrospinal fluid, which may operate in unison with the dura in protecting the cord from impacts. Future work includes the incorporation of the CSF into the model, the development of surrogate cords and the generation of computational models using novel programming techniques.