header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 28 - 28
1 Mar 2021
El-Hawary R Padhye K Howard J Ouellet J Saran N Abraham E Manson N Peterson D Missiuna P Hedden D Alkhalife Y Viswanathan V Parsons D Ferri-de-Barros F Jarvis J Moroz P Parent S Mac-Thiong J Hurry J Orlik B Bailey K Chorney J
Full Access

Proximal junctional kyphosis (PJK) is defined as adjacent segment kyphosis >10° between the upper instrumented vertebrae and the vertebrae 2 levels above following scoliosis surgery. There are few studies investigating the predictors and clinical sequelae involved with this relatively common complication. Our purpose was to determine the radiographic predictors of post-op PJK and to examine the association between PJK and pain/HRQOL following surgery for AIS.

The Post-Operative Recovery after Scoliosis Correction: Home Experience (PORSCHE) study was a prospective multicenter cohort of AIS patients undergoing spinal fusion surgery. Pre-op and minimum 2 year f/u scoliosis and sagittal spinopelvic parameters (thoracic kyphosis–TK, lordosis–LL, pelvic tilt-PT, sacral slope-SS, pelvic incidence-PI) were measured and compared to numeric rating scale for pain (NRS) score, SRS-30 HRQOL and to the presence or absence of PJK (proximal junctional angle >100). Continuous and categorical variables were assessed using logistic regression and binomial variables were compared to binomial outcomes using chi-square.

163 (137 females) patients from 8 Canadian centers met inclusion criteria. At final f/u, PJK was present in 27 patients (17%). Pre-op means for PJK vs No PJK: Age 14.1 vs 14.7yr; females 85 vs 86%; scoliosis 57±22 vs 62±15deg; TK 28±18 vs 19±16deg ∗, LL 62±11 vs 60±12deg, PT 8±12 vs 10±10deg, SS 39±8 vs 41±9deg, PI 47±14 vs 52±13deg, SVA −9±30 vs −7±31mm. Final f/u for PJK vs No PJK: Scoliosis 20±11 vs 18±8deg, final TK 26±12 vs 19±10deg∗, LL 60±11 vs 57±12deg, PT 9±12 vs 12±13deg, SS 39±9 vs 41±9deg, PI 48±17 vs 52±14deg, SVA −23±26 vs −9±32mm∗. Significant findings: Pre-op kyphosis >40deg has an odds ratio (OR) of 4.41 (1.50–12.92) for developing PJK∗. The presence of PJK was not associated with any significant differences in NRS or SRS-30. ∗denotes p<0.05.

This prospective multicenter cohort of AIS patients demonstrated a 17% risk of developing PJK. Pre-op thoracic kyphosis >40deg was associated with the development of PJK; however, the presence of PJK was not associated with increased pain or decreased HRQOL.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 86 - 86
1 Jan 2004
Cook S Schwardt J Patron L Christakis P Bailey K Glazer P
Full Access

Introduction: The use of adjunctive techniques such as electrical stimulation may improve the rate of successful anterior lumbar interbody fusion. The purpose of this study was to determine if supplemental direct current electrical stimulation of a titanium anterior spinal fusion device increases the incidence and extent of bony fusion in a nonhuman primate model.

Methods: Anterior lumbar interbody fusion was performed at the L5–L6 level in 35 adult pigtail macaque monkeys with iliac crest graft and either a titanium fusion device or a femoral allograft ring. The fusion devices of some animals received either high current (100μA) or low current (28μA) electrical stimulation using an implanted generator for the duration of the 12- or 26- week evaluation period. All animals were studied using AP and lateral radiographs, CT imaging, nondestructive mechanical testing, and qualitative and quantitative histology. Specimens were scored for presence of fusion according to a semi-quantitative scale (0 = No healing, 1 = Minimal consolidation, 2 = Consolidation, 3 = Bridging callus, 4 = Bridging callus with trabeculations, 5= Evidence of bony remodeling of callus). A similar scale was used to score the extent of fusion.

Results: As shown in Table 1, both low and high current stimulation groups had generally increased incidence of bony fusion compared to the non-stimulated and femoral allograft ring groups. At 26 weeks, the extent of bony fusion increased with the devices from 43% to 75% in a dose-dependent fashion, compared to 25% with the femoral rings. Mechanical testing also demonstrated similar increases in mechanical stiffness in a dose-dependent fashion.

Discussion: Adjunctive electrical stimulation of an anterior titanium spinal fusion device improved success rate and overall fusion quality compared to non-stimulated devices and femoral allograft rings. Stimulated devices may be particularly beneficial in patients with known risk factors for nonunion.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 281 - 281
1 Mar 2003
Cook S Schwardt J Patron L Christakis P Bailey K Glazer P
Full Access

INTRODUCTION: The use of adjunctive techniques such as electrical stimulation may improve the rate of successful anterior lumbar interbody fusion. The purpose of this study was to determine if supplemental direct current electrical stimulation of a titanium anterior spinal fusion device increases the incidence and extent of bony fusion in a nonhuman primate model.

METHODS: Anterior lumbar interbody fusion was level in 35 adult pigtail macaque performed at the L5–L6 monkeys with iliac crest graft and either a titanium fusion device or a femoral allograft ring. The fusion devices of some animals received either high current (100 μA) or low current (28 μA) electrical stimulation using an implanted generator for the duration of the 12- or 26-week evaluation period. All animals were studied using AP and lateral radiographs, CT imaging, nondestructive mechanical testing, and qualitative and quantitative histology. Specimens were scored for presence of fusion according to a semi-quantitative scale (0 = No healing, 1 = Minimal consolidation, 2 = Consolidation, 3 = Bridging callus, 4 = Bridging callus with trabeculations, 5= Evidence of bony remodeling of callus). A similar scale was used to score the extent of fusion.

RESULTS: As shown in Table 1, both low and high current stimulation groups had generally increased incidence of bony fusion compared to the non-stimulated and femoral allograft ring groups. At 26 weeks, the extent of bony fusion increased with the devices from 43% to 75% in a dose-dependent fashion, compared to 25% with the femoral rings. Mechanical testing also demonstrated similar increases in mechanical stiffness in a dose-dependent fashion.

DISCUSSION: Adjunctive electrical stimulation of an anterior titanium spinal fusion device improved success rate and overall fusion quality compared to non-stimulated devices and femoral allograft rings. Stimulated devices may be particularly beneficial in patients with known risk factors for nonunion.