header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 39 - 39
1 Nov 2018
Del-Valle-Mojica J Alonso-Rasgado M Jiménez-Cruz D Bailey C Board T
Full Access

In order to reduce the risk of dislocation larger femoral heads in total hip arthroplasty (THA) are being used by surgeons in recent years. The standard head size of 28 mm used in 73% of all hip procedures in 2003 was used in only 29% in 2016; whereas head sizes of 32 mm and 36 mm combined, were used in 70%. The increase of head size effectively reduces the thickness of the acetabular cup, altering the load transfer. Herein, this research work investigates the effect of increasing the femoral head size on the stresses of the periacetabular bone at two selected regions: A1 (superior) and A2 (anterior). Three Finite Element models were developed from CT scan data of a hemipelvis implanted with a cemented all-polyethylene acetabular cup with a 50 mm outer diameter and inner diameter to accommodate three head sizes: 28 mm, 32 mm and 36 mm. The peak reaction force at the hip joint during one leg stand for an overweight patient with a body weight of 100 Kg was simulated for head sizes investigated. We found that highest average von Mises stress was 5.7 MPa and occurred in the cortical bone of region A1 which is located within Zone 1 boundaries (Charnley &DeLee); whereas a lower stress of 4.0 MPa occurred at region A2. In the two regions the stresses were the same for the three head sizes. Periacetabular bone was found to be insensitive to the increase of femoral head diameter in cemented THA.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 37 - 37
1 Nov 2018
Leonardo-Diaz R Alonso-Rasgado T Jimenez-Cruz D Bailey C Talwalkar S
Full Access

The treatment of scapholunate (SL) ligament injuries is addressed by surgical procedures to stabilize the carpal joint. Open techniques include bone-ligament-bone transfers, tenodesis, partial fusions and carpectomies. Innovative procedures using wrist arthroscopy, offer minimally invasive fixation without full exposure of carpal bones; however, the success of the technique and its impact on the reduction on the range of carpal movement is as yet not well known. In this work, the performance of Corella tenodesis technique to repair the SL ligament is evaluated for a wrist type II by numerical methods. Human wrist can be classified based on the lunate morphology: type I for lunate that articulates with radius, scaphoid, capitate and triquetrum, and type II which has an extra surface to articulate with the hamate. A finite element model was constructed from CT-scan images, the model includes cortical and trabecular bones, articular cartilage and ligaments. Three scenarios were simulated representing healthy wrist, SL ligament sectioning and the Corella technique. The performance of the technique was assessed by measure the SL gap in dorsal and volar side as well as the SL angle to be compared to cadaveric studies. In intact position, the SL gap and the SL angle predicted by the numerical model is 2.8 mm and 44.8º, these values are consistent to the standard values reported in cadaveric experiments (2.0 ± 0.8 mm for SL gap and 45.8 ± 9.7 for SL angle). Virtual surgeries may help to understand and evaluate the performance of the techniques at clinical application.