header advert
Results 1 - 9 of 9
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 2 - 2
2 Jan 2024
Mariscal G Burgos J Antón-Rodrigálvarez L Hevia E Barrios C
Full Access

In healthy subjects, respiratory maximal volumes are highly dependent on the sagittal range of motion of the T7-T10 segment. In AIS, the abolition of T7-T10 dynamics related to the stiffness induced by the apex region in Lenke IA curves could harm ventilation during maximal breathing. The aim of this study was to analyze the dynamics of the thoracic spine during deep breathing in AIS patients and in healthy matched controls. This is a cross-sectional, case-control study. 20 AIS patients (18 girls, Cobb angle, 54.7±7.9°; Risser 1.35±1.2) and 15 healthy volunteers (11 girls) matched in age (12.5 versus 15.8 yr. mean age) were included. In AIS curves, the apex was located at T8 (14) and T9 (6). Conventional sagittal radiographs of the whole spine were performed at maximal inspiration and exhalation. The ROM of each spinal thoracic functional segment (T1-T7, T7-T10, T10-T12) and the global T1-T12 ROM were measured. In healthy subjects, the mean T1-T12 ROM during forced breathing was 16.7±3.8. AIS patients showed a T1-T12 ROM of 1.1±1.5 (p<0.05), indicating a sagittal stiffness of the thoracic spine. A wide T7-T10 ROM (15.3±3.0) was found in healthy controls (91.6% of the T1–T12 ROM). AIS patients showed only 0.4±1.4 ROM at T7-T10 (36.4% of the T1-T12 ROM) (p<0.001). There was a significant positive correlation between the magnitude of T7-T10 kyphosis in maximal exhalation and both FVC (% of predicted FVC) and FEV1. In conclusion, Lenke 1A AIS patients show a restriction of the thoracic spine motion with an almost complete abolition of T7-T10 ROM, a crucial segment for deep breathing. T7-T10 stiffness could explain the ventilatory limitations found in AIS patients.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 24 - 24
2 Jan 2024
Burgos J Mariscal G Antón-Rodrigálvarez L Sanpera I Hevia E García V Barrios C
Full Access

The aim of this study was to report the restauration of the normal vertebral morphology and the absence of curve progression after removal the instrumentation in AIS patients that underwent posterior correction of the deformity by common all screws construct whitout fusion. A series of 36 AIS immature patients (Risser 3 or less) were include in the study. Instrumentation was removed once the maturity stage was complete (Risser 5). Curve correction was assessed at pre and postoperative, before instrumentation removal, just post removal, and more than two years after instrumentation removal. Epiphyseal vertebral growth modulation was assessed by a coronal wedging ratio (WR) at the apical level of the main curve (MC). The mean preoperative coronal Cobb was corrected from 53.7°±7.5 to 5.5º±7.5º (89.7%) at the immediate postop. After implants removal (31.0±5.8 months) the MC was 13.1º. T5–T12 kyphosis showed a significant improvement from 19.0º before curve correction to 27.1º after implants removal (p<0.05). Before surgery, WR was 0.71±0.06, and after removal WR was 0.98±0.08 (p<0.001). At the end of follow-up, the mean sagittal range of motion (ROM) of the T12-S1 segment was 51.2±21.0º. SRS-22 scores improved from 3.31±0.25 preoperatively to 3.68±0.25 at final assessment (p<0.001). In conclusion, fusionless posterior approach using a common all pedicle screws construct correct satisfactory scoliotic main curves and permits removal of the instrumentation once the bone maturity is reached. The final correction was highly satisfactory and an acceptable ROM of the previously lower instrumented segments was observed.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 121 - 121
11 Apr 2023
Mariscal G Burgos J Antón-Rodrigálvarez L Hevia E Barrios C
Full Access

To analyze the dynamics of the thoracic spine during deep breathing in AIS patients and in healthy matched controls.

Case-control cross-sectional study. 20 AIS patients (18 girls, Cobb angle, 54.7±7.9°; Risser 1.35±1.2) and 15 healthy volunteers (11 girls) matched in age (12.5 versus 15.8 yr. mean age) were included. In AIS curves, the apex was located in T8 (14) and T9 (6). Conventional sagittal radiographs of the whole spine were performed at maximal inspiration and expiration. The ROM of each spinal thoracic functional segment (T1-T7, T7-T10, T10-T12), the global T1–T12 ROM were measured. Respiratory function was assess by forced vital capacity (FVC), expiratory volume (FEV1), FEV1/FVC, inspiratory vital capacity (IVC) and peak expiratory flow (PEF).

In healthy subjects, the mean T1–T12 ROM during forced breathing was 16.7±3.8. AIS patients showed a T1-T12 ROM of 1.1±1.5 (p<0.05) indicating a sagittal stiffness of thoracic spine. A wide T7–T10 ROM (15.3±3.0) was found in healthy controls (91.6% of the T1–T12 ROM). AIS patients showed only 0.4±1.4 ROM at T7-T10 (36.4% of the T1–T12 ROM) (p<0.001). There was a significant correlation between T7-T10 ROM and IVC.

Lenke 1A AIS patients show a restriction of the thoracic spine motion with an almost complete abolition of T7-T10 ROM, a crucial segment participating in the deep breathing. T7-T10 stiffness could explain the ventilatory limitations found in AIS patients.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 92 - 92
1 May 2017
Barrios C Llombart R Maruenda B Alonso J Burgos J Lloris J
Full Access

Background

Using flexible tethering techniques, porcine models of scoliosis have been previously described. These scoliotic curves showed vertebral wedging but very limited axial rotation. In some of these techniques, a persistent scoliotic deformity was found after tether release. The possibility to create severe progressive true scoliosis in a big animal model would be very useful for research purposes, including corrective therapies.

Methods

The experimental ethics committee of the main institution provide the approval to conduct the study. Experimental study using a growing porcine model. Unilateral spinal bent rigid tether anchored to two ipsilateral pedicle screws was used to induce scoliosis on eight pigs. Five spinal segments were left between the instrumented pedicles. The spinal tether was removed after 8 weeks. Ten weeks later the animals were sacrificed. Conventional radiographs and 3D CT-scans of the specimens were taken to evaluate changes in the coronal and sagittal alignment of the thoracic spine. Fine-cut CT-scans were used to evaluate vertebral and disc wedging and axial rotation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 90 - 90
1 May 2017
Hevia E Solaz J Barrios C Caballero A Burgos J
Full Access

Background

Oblique implantable total disc replacements (TDR) have been developed in an attempt to partially resect the anterior longitudinal ligament (ALL), together with additional partial resection of lateral annulus fibres. To date, the literature has not addressed the impact of the TDR oblique implantation on the lumbar spine sagittal alignment. The hypothesis of this study was that TDR at the L4-L5 level does not change the sagittal alignment and the range of motion of the lumbar spine when the implant is placed in accurate position.

Methods

Prospective single-center radiological investigation of L4/5 TDR inserted through an oblique approach for the treatment of disc disease. A series of 52 patients with a minimum of 2-year FU after oblique TDR at L4/L5 level was analysed for radiological changes in sagittal alignment and range of motion of the lumbar spine. The total sagittal lumbar lordosis (TSLL), the segmental sagittal lumbar lordosis (SSLL) of the operated level, and the range of motion of the TDR implant were determined in pre- and postoperative functional X-rays. The accuracy of the implant position was also evaluated.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 59 - 59
1 Apr 2017
Hernandez C Burgos J Antón L García V Hevia E Barrios C
Full Access

Background

The improvement of the rib cage deformity (RCD) after surgery correction has not been correlated in detail with the correction of vertebral axial rotation (AR). The loss of at the rib cage after correction has been never monitored. The hypothesis of this work was that the aesthetic improvement of RCD in adolescent idiopathic scoliosis (AIS) does not follow completely the reduction of thoracic AR after correction surgery. Moreover, lesser correction of thorax deformity could be expected in mature patients with more rigid curves.

Methods

Multicenter prospective study of the modifications of the rib cage deformity in 24 patients operated because of AIS Lenke type 1A. RDC was assessed in the preoperative MRI exams including the thoracic perimeter. Vertebral AR was quantified by the RaSac angle. Anterior and posterior rib hump, and the translation of the sternum were measured in mm according to standard protocols. All these parameters were assessed in the immediate post-op period and 2-years after surgery using CT-scan axial slides. In all cases, a vertebral derotation technique performed by asymmetric rod bending was used. Immature (Risser 0–2) and mature (Risser 3–4) patients were compared.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 58 - 58
1 Apr 2017
Lorente R Fernández-Pineda L Burgos J Antón-Rodrigálvarez L Hevia E Pérez-Encinas C Barrios C
Full Access

Background

After surgical correction of thoracic scoliosis, an improvement in the cardio-respiratory adaptation to exercise would be expected because of the correction of the rib cage associated with the spinal deformity. This work intended to evaluate the physiologic responses to incremental exercise in patients undergoing surgical correction of adolescent idiopathic scoliosis (AIS). The hypothesis of this study was that the exercise limitations described in patients with AIS could be related with the physical deconditioning instead of being linked to the severity of the vertebral deformity.

Methods

Cross-sectional study of the exercise tolerance in a series of patients with AIS type Lenke 1A, before and 2 years after surgical correction. Twenty patients with AIS and 10 healthy adolescents aged between 12 and 17 years old were evaluated. The average magnitude of the curves was 60.3±12.9 Cobb. Cardio-respiratory function was assessed before surgery and at 2-year follow-up by maximal exercise tolerance test on treadmill following a Bruce standard protocol. Maximal oxygen uptake (VO2), VCO2, expiratory volume (VE), and VE/VO2 ratio were registered.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 58 - 58
1 Jul 2014
Barrios C Zena V de Blas G García-Casado J Cabañes L Catalán B Burgos J Noriega D Saiz J
Full Access

Summary Statement

Patients with adolescent idiopathic scoliosis show clear signs of abnormal motor coordination between the long superficial paraspinal muscles and the deep rotators. These findings suggest an abnormal behavior of the deep rotator muscles at the concave side.

Introduction

An imbalance between the myoelectric activity of the muscles of the convexity and the concavity has been described in patients with adolescent idiopathic scoliosis (AIS). These findings are based on EMG patterns recorded with surface electrodes that do not distinguish between deep and superficial muscles. This work was aimed at analyzing the coupled behavior of the superficial and deep paraspinal muscles in subjects with AIS at both sides of the curve.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 297 - 297
1 Jul 2014
Barrios C Montes E Burgos J de Blas G Antón-Rodrigálvarez M Hevia E Correa C
Full Access

Summary Statement

The spinal cord showed marked sensibility to acute compression causing complete and irreversible injury. On the contrary, the spinal cord has more ability for adaptation to slow progressive compression mechanisms having the possibility of neural recovery after compression release.

Introduction

The aim of this experimental study was to establish, by means of neurophysiologic monitoring, the degree of compression needed to cause neurologic injury to the spinal cord, and analyze whether these limits are different making fast or slow compression.