Dislocation is one of the most common complications in total hip arthroplasty (THA) and is primarily driven by bony or prosthetic impingement. The aim of this study was two-fold. First, to develop a simulation that incorporates the functional position of the femur and pelvis and instantaneously determines range of motion (ROM) limits. Second, to assess the number of patients for whom their functional bony alignment escalates impingement risk. 468 patients underwent a preoperative THA planning protocol that included functional x-rays and a lower limb CT scan. The CT scan was segmented and landmarked, and the x-rays were measured for pelvic tilt, femoral rotation, and preoperative leg length discrepancy (LLD). All patients received 3D templating with the same implant combination (Depuy; Corail/Pinnacle). Implants were positioned according to standardised criteria. Each patient was simulated in a novel ROM simulation that instantaneously calculates bony and prosthetic impingement limits in functional movements. Simulated motions included flexion and standing-external rotation (ER). Each patient's ROM was simulated with their bones oriented in both functional and neutral positions. 13% patients suffered a ROM impingement for functional but not neutral extension-ER. As a result, 48% patients who failed the functional-ER simulation would not be detected without consideration of the functional bony alignment. 16% patients suffered a ROM impingement for functional but not neutral flexion. As a result, 65% patients who failed the flexion simulation would not be detected without consideration of the functional bony alignment. We have developed a ROM simulation for use with preoperative planning for THA surgery that can solve bony and prosthetic impingement limits instantaneously. The advantage of our ROM simulation over previous simulations is instantaneous impingement detection, not requiring implant geometries to be analysed prior to use, and addressing the functional position of both the femur and pelvis.
In 2021, Vigdorchik et al. published a large multicentre study validating their simple Hip-Spine Classification for determining patient-specific acetabular component positioning in total hip arthroplasty (THA). The purpose of our study was to apply this Hip-Spine Classification to a sample of Australian patients undergoing THA surgery to determine the local acetabular component positioning requirements. Additionally, we propose a modified algorithm for adjusting cup anteversion requirements. 790 patients who underwent THA surgery between January 2021 and June 2022 were assessed for anterior pelvic plane tilt (APPt) and sacral slope (SS) in standing and relaxed seated positions and categorized according to their spinal stiffness and flatback deformity. Spinal stiffness was measured using pelvic mobility (PM); the ΔSS between standing and relaxed seated. Flatback deformity was defined by APPt <-13° in standing. As in Vigdorchik et al., PM of <10° was considered a stiff spine. For our algorithm, PM of <20° indicated the need for increased cup anteversion. Using this approach, patient-specific cup anteversion is increased by 1° for every degree the patient's PM is <20°. According to the Vigdorchik simple Hip-Spine classification groups, we found: 73% Group 1A, 19% Group 1B, 5% Group 2A, and 3% Group 2B. Therefore, under this classification, 27% of Australian THA patients would have an elevated risk of dislocation due to spinal deformity and/or stiffness. Under our modified definition, 52% patients would require increased cup anteversion to address spinal stiffness. The Hip-Spine Classification is a simple algorithm that has been shown to indicate to surgeons when adjustments to acetabular cup anteversion are required to account for spinal stiffness or flatback deformity. We investigated this algorithm in an Australian population of patients undergoing THA and propose a modified approach: increasing cup anteversion by 1° for every degree the patient's PM is <20°.
This prospective study presents the ten-year (5 to 16) clinical and radiological results of 55 primary total hip replacements (THR) using a cementless modular femoral component (S-ROM). All patients had a significant anatomical abnormality which rendered the primary THR difficult. The mean Harris hip score was 36 (12 to 72) pre-operatively, 83 (44 to 100) at five years, and 85 (45 to 99) at ten years. The Western Ontario and McMaster Universities osteoarthritis index (WOMAC) and short-form (SF)-12 scores were recorded from the year 2000. The mean SF-12 score at five years after surgery was 45.24 (22.74 to 56.58) for the physical component and 54.14 (29.20 to 66.61) for the mental component. By ten years the SF-12 scores were 42.86 (21.59 to 58.95) and 51.03 (33.78 to 61.40), respectively. The mean WOMAC score at five years post-operatively was 25 (0 to 59), and at ten years was 27 (2 to 70). No femoral components were radiologically loose, although five had osteolysis in Gruen zone 1, three had osteolysis in zone 7, and two showed osteolysis in both zones 1 and 7. No osteolysis was observed around or distal to the prosthetic sleeve. No femoral components were revised, although three hips underwent an acetabular revision and two required a liner exchange. At a mean of ten years’ follow-up the S-ROM femoral component implanted for an anatomically difficult primary THR has excellent clinical and radiological results.