Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 7 - 7
1 Oct 2016
Ayre WN Scott T Hallam K Blom A Denyer S Bone H Mansell J
Full Access

In England and Wales in 2012 over 160,000 primary total hip and knee replacements were performed with 57% of hip replacements utilising uncemented prostheses. The main cause of failure, affecting approximately 10% of patients, is aseptic loosening. Previous research has found that functionalising titanium with lysophosphatidic acid (LPA) induces an increase in human osteoblast maturation on the implant surface through co-operation with active metabolites of vitamin D3. This feature, the small size of the LPS molecule and its affinity to readily bind to titanium and hydroxylapatite makes it an especially desirable molecule for bone biomaterials. Nevertheless biomaterials that also demonstrate anti-microbial properties are highly desirable.

To test the antimicrobial efficacy of the LPA-functionalised titanium, a clinical isolate of Staphylococcus aureus, obtained from an infected revision surgery, was cultured on the surface of titanium discs functionalised with 0, 0.1. 0.5, 1, 2 and 5μM LPA. Bacterial adhesion was quantified at 1, 2, 6, 12 and 24 hours by live/dead counts and biofilm mass quantified by crystal violet staining after 24, 48, 72 and 96 hours culture. To elucidate the mechanisms of action of LPA, proteomic analysis of adhered bacteria was performed using SDS-PAGE and Western blots.

500nM to 1μM LPA were the optimum concentrations to significantly inhibit bacterial adhesion (ANOVA, p<0.001). These concentrations also reduced biofilm mass on the surface of the titanium. Proteomic analysis highlighted an increase in low molecular weight proteins as a result of optimal LPA surface concentrations. Fatty acid chains as found in LPA have previously been associated with causing leakage of low molecular weight proteins through increased cell membrane permeability.

LPA coatings have the potential to enhance implant osseointegration whilst simultaneously reducing bacterial attachment. This technology may reduce both septic and aseptic failure of cementless joint prostheses, ultimately prolonging implant longevity and patient quality of life.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 63 - 63
1 May 2012
Ayre WN Evans SL
Full Access

The most common mode of failure observed in cemented orthopaedic implants is aseptic loosening of the prosthesis over time. This occurs as a result of fatigue failure of the bone cement under different loading conditions. Although a great deal of research has been carried out on the fatigue crack development of poly(methyl methacrylate) (PMMA) bone cements, the effects of different loading frequencies at low and high stress intensities are not well understood. Therefore, the aims of this study are to determine the effects of loading PMMA bone cement at different stress intensities and loading frequencies, as seen in-vivo, and the effects of changing these parameters on fatigue crack propagation. To achieve these aims, disc compact tension (DCT) samples with chevron notches were made and Krak Gages (Russenberger Prufmaschinen, Neuhausen am Rheinfall, Switzerland) were attached to monitor crack growth. The bone cement used in this study was the Cemex System, which uses a cement gun to mix and apply the material into the cavity. From standard compression and bending tests it was found that the cement made using this system had an average compressive strength of 86.66±5.52MPa, an average bending modulus of 3696.06±121.13MPa and an average bending strength of 51.95±4.14MPa. These values are within the normal range of acrylic resin cements for implants and above the minimum requirements of the ISO5833:2002 standard. A program has been written that loads the DCT samples with a stress intensity of 0.2MPam1/2, 0.6MPam1/2 and 1.0MPam1/2 at a frequency of 1Hz, 2Hz, 5Hz, 10Hz and 20Hz. The crack was allowed to grow 0.2mm at each frequency and the frequencies were increased (1Hz to 20Hz) then decreased in magnitude (20Hz to 1Hz) for each of the stress intensities.

This experimental design enables much more sensitive detection of small changes in crack growth rate than a conventional test where the crack grows through the entire range of δK at a single frequency. By repeatedly varying the loading within the same specimen the effects of variation between specimens can be removed, revealing significant differences in crack growth rate. The results provide important information on bone cement when loaded in conditions similar to those seen in-vivo and how frequency and stress intensities affect the fracture mechanics of PMMA.