Investigate the incorporation of an antibiotic in bone cement using liposomes (a drug delivery system) with the potential to promote osseointegration at the bone cement interface whilst maintaining antibiotic elution, anti-microbiological efficacy and cement mechanical properties. Prosthetic joint infection and aseptic loosening are associated with significant morbidity. Antibiotic loaded bone cement is commonly used and successfully reduces infection rates; however, there is increasing resistance to the commonly used gentamicin. Previous studies have shown gentamicin incorporated into bone cement using liposomes can maintain the cement's mechanical properties and improve antibiotic elution. The phospholipid phosphatidyl-l-serine has been postulated to encourage surface osteoblast attachment and in a liposome could improve osseointegration, thereby reducing aseptic loosening. Preliminary clinical isolate testing showed excellent antimicrobial action with amoxicillin therefore the study aims were to test amoxicillin incorporated into bone cement using liposomes containing phosphatidyl-l-serine in terms of antibiotic elution, microbiological profile and mechanical properties. Amoxicillin was encapsulated within 100nm liposomes containing phosphatidyl-L-serine and added to PMMA bone cement (Palacos R (Heraeus Medical, Newbury, UK)). Mechanical testing was performed according to Acrylic Cement standards (ISO BS 5833:2002). Elution testing was carried out along with microbiological testing utilising clinical isolates.Objectives
Methods
In England and Wales in 2012 over 160,000 primary total hip and knee replacements were performed with 57% of hip replacements utilising uncemented prostheses. The main cause of failure, affecting approximately 10% of patients, is aseptic loosening. Previous research has found that functionalising titanium with lysophosphatidic acid (LPA) induces an increase in human osteoblast maturation on the implant surface through co-operation with active metabolites of vitamin D3. This feature, the small size of the LPS molecule and its affinity to readily bind to titanium and hydroxylapatite makes it an especially desirable molecule for bone biomaterials. Nevertheless biomaterials that also demonstrate anti-microbial properties are highly desirable. To test the antimicrobial efficacy of the LPA-functionalised titanium, a clinical isolate of 500nM to 1μM LPA were the optimum concentrations to significantly inhibit bacterial adhesion (ANOVA, p<0.001). These concentrations also reduced biofilm mass on the surface of the titanium. Proteomic analysis highlighted an increase in low molecular weight proteins as a result of optimal LPA surface concentrations. Fatty acid chains as found in LPA have previously been associated with causing leakage of low molecular weight proteins through increased cell membrane permeability. LPA coatings have the potential to enhance implant osseointegration whilst simultaneously reducing bacterial attachment. This technology may reduce both septic and aseptic failure of cementless joint prostheses, ultimately prolonging implant longevity and patient quality of life.
The most common mode of failure observed in cemented orthopaedic implants is aseptic loosening of the prosthesis over time. This occurs as a result of fatigue failure of the bone cement under different loading conditions. Although a great deal of research has been carried out on the fatigue crack development of poly(methyl methacrylate) (PMMA) bone cements, the effects of different loading frequencies at low and high stress intensities are not well understood. Therefore, the aims of this study are to determine the effects of loading PMMA bone cement at different stress intensities and loading frequencies, as seen This experimental design enables much more sensitive detection of small changes in crack growth rate than a conventional test where the crack grows through the entire range of δK at a single frequency. By repeatedly varying the loading within the same specimen the effects of variation between specimens can be removed, revealing significant differences in crack growth rate. The results provide important information on bone cement when loaded in conditions similar to those seen