Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Trauma

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 568 - 568
1 Sep 2012
Hussain A Kamali A Li C Ashton R
Full Access

INTRODUCTION

Whilst there is a great deal of research on hip implants, few studies have looked at implant orientation and the subsequent effect upon the wear performance of a hip resurfacing. This study aimed to measure implantation angles through radiographic analysis and linear wear for retrieved acetabular cups in order to investigate possible causal links between wear and implant orientation.

MATERIALS & METHODS

Seventy Birmingham Hip Resurfacing (Smith & Nephew, UK) cups with known time in vivo were analysed. Linear wear of retrieved cups were assessed using a Talyrond 290 roundness machine. Deviations from the characteristic manufactured profile, was identified as a region of wear. Polar measurements across the wear region were taken to determine wear. The linear wear rate (LWR) of a component was defined as the linear wear (μm) divided by the duration of the implant life in vivo (years). Cups which showed the wear crossing over the edge of the cup were classified as edge loaded (EL). For all non-edge loaded (NEL) cups, the wear area was within the bearing surface. Cup orientation angles were conducted for 31 cups. This was determined by superimposing BHR models of appropriate size, generated by CAD ProEngineer Wildfire 4, onto anterior-posterior x-rays. Anatomical landmarks and specific features of the BHR were used as points of reference to determine cup version and inclination angles.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 239 - 239
1 Sep 2012
Hussain A Hussain A Kamali A Li C Pamu J Ashton R
Full Access

INTRODUCTION

Analysis of retrieved ceramic components have shown areas of localized ‘stripe wear’, which have been attributed to joint laxity and/or impingement resulting in subluxation of the head, causing wear on the edge of the cup. Studies have been conducted into the effects of mild subluxation, however few in vitro tests have looked at severe subluxation. The aim of this study was to develop a more clinically relevant subluxation protocol.

MATERIALS & METHODS

Seven (Subluxation n=4; standard test n=3) of 36mm Biolox Forte (R3, Smith & Nephew) ceramic devices were tested for 0.5m cycles (mc). Two of the subluxed joints were further tested to 1 Mc. The devices were subjected to subluxation under standard testing conditions. The flex/ext was 30° and 15° respectively, with internal/external rotation of ±10°. The force was Paul type stance phase loading with a maximum load of 3 kN, and a standard ISO swing phase load of 0.3 kN at 1 Hz.

The test was conducted on a ProSim hip joint wear simulator (SimSol, UK). The simulator is equipped with a novel mechanism to achieve translation of the head, to achieve subluxation. During the ISO swing phase load of 0.3kN, a controlled lateral force required for the translation of the head is applied by a cam mechanism, head retraction then occurs during heel strike.

The lubricant used was new born calf serum diluted with de-ionised water to achieve average protein concentration of 20 g/l, with 0.2 wt % concentration NaN3, and changed every 250k cycles. Measurements have been taken at 0.5 & 1 mc stages.